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Abstract

We describe a novel algorithm for unsupervised segmentation of sequences
into alternating Variable Memory Markov sources, first presented in [SBT01].
The algorithm is based on competitive learning between Markov models, when
implemented as Prediction Suffiz Trees [RST96] using the MDL principle. By
applying a model clustering procedure, based on rate distortion theory com-
bined with deterministic annealing, we obtain a hierarchical segmentation of
sequences between alternating Markov sources. The method is applied suc-
cessfully to unsupervised segmentation of multilingual texts into languages
where it is able to infer correctly both the number of languages and the lan-
guage switching points. When applied to protein sequence families (results
of the [BSMTO01] work), we demonstrate the method’s ability to identify bi-
ologically meaningful sub-sequences within the proteins, which correspond to
signatures of important functional sub-units called domains. Our approach
to proteins classification (through the obtained signatures) is shown to have
both conceptual and practical advantages over the currently used methods.

1 Introduction

Unsupervised segmentation of sequences has become a fundamental problem with
many important applications such as analysis of texts, handwriting and speech, neu-
ral spike trains and bio-molecular sequences. The most common statistical approach
to this problem, using hidden Markov models (HMM), was originally developed for
the analysis of speech signals, but became the method of choice for statistical seg-
mentation of most natural sequences. HMMs are predefined parametric models -
their architecture and topology are predetermined and the memory is limited to
first order in most common applications. The success of HMMs thus crucially de-
pends on the correct choice of the state model. It is rather difficult to generalize
these models to hierarchical structures with unknown a-priory state-topology (see
[FST98] for an attempt).

An interesting alternative to the HMM was proposed in [RST96] in the form of
a sub class of probabilistic finite automata, the variable memory Markov (VMM)
sources. These models have several important advantages over the HMMs: (i) they
capture longer correlations and higher order statistics of the sequence; (ii) they
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can be learned in a provably optimal PAC like sense using a construction called
prediction suffix tree (PST) [RST96]; (iii) they can be learned efficiently by linear
time algorithm [ABOO]; and (iv) their topology and complexity are determined by
the data.

In the first half of the paper we review a powerful extension of the VMM model
and the PST algorithm to a stochastic mixture of such models, suggested in [SBT01].
The algorithm learns the models in a hierarchical competitive way using a determin-
istic annealing (DA) [Ros98] approach. The problem is generally computationally
hard, similarly to data clustering. Only very simple sequences can be correctly seg-
mented efficiently in general [FR95]. Our model can in fact be viewed as an HMM
with a VMM attached to each state, but the learning algorithm allows a completely
adaptive structure and topology both for each state and for the whole model. The
approach we take is information theoretic in nature. The goal is to enable short
description of the data by a (soft) mixture of VMM models, each one controlled by
an MDL principle (see [BRY98] for a review). This we do by modifying the original
PST algorithm using the MDL formulation, while preserving its good learnability
properties. The mixture model is then learned via a generalized rate distortion
theory (see [CT91, Ch. 13]) approach. Here we take the log-likelihood of the data
by each model as an effective distortion measure between the sequence and its rep-
resentative model and apply the Blahut-Arimoto (BA) algorithm (see [CT91]) to
optimally partition the sequence(s) between the VMM model centroids. Just like in
many clustering algorithms we then update the models based on this optimal par-
tition of the sequence(s). In this way a natural resolution parameter is introduced
through the constraint on the expected tolerated distortion. This “temperature”
like Lagrange multiplier is further used in the deterministic annealing loop to con-
trol the resolution of the model. The hierarchical structure is obtained by allowing
the models to split (the refinement step) after convergence of the iterations between
the BA algorithm and the VMM centroids update. The algorithm exhibits several
interesting features that will be only mentioned here due to space limitations. Their
discussion is left to [Sel01].

In the second part of the paper we cite the results of an interesting application
of the algorithm to the problem of protein sequences classification, mainly taken
from the [BSMTO01] work. The function of a protein is determined by its sequence.
Numerous proteins exhibit a modular architecture, consisting of several sequence
domains that often carry specific biological functions (reviewed in [BK96]). For pro-
teins whose structure has been solved, it can be shown that in many cases the char-
acterized sequence domains are associated with autonomous structural domains. In
proteins of various organisms we find domains that are responsible for similar bio-
chemical functionality. The sequences of those domains are usually resembling, but
not identical. Characterization of a protein family by its distinct sequence domains
either directly or through the use of domain 'motifs’, or ’signatures’ (short sub-
segments of the domain that are typical for most members of that family) is crucial
for functional annotation and correct classification of newly discovered proteins.

Many methods have been proposed for classification of proteins based on their
sequence characteristics. Most of them are based on a seed multiple sequence align-
ment (MSA) of proteins that are known to be related (see [DEKM98]). They
strongly rely on the initial selection of the related protein segments for the MSA,
usually hand crafted by experts, and on the quality of the MSA itself. Besides be-
ing in general computationally intractable, when remote sequences are included in
a group of related proteins, establishment of a good MSA ceases to be an easy task
and delineation of the domain boundaries proves even harder. This becomes nearly



impossible for heterogeneous groups where the shared motifs are not necessarily
abundant or do not come in the same order.

In the earlier work of [BYO01] PSTs were shown to be a powerful tool for su-
pervised classification of proteins. This work extends our abilities by allowing to
perform this task in unsupervised manner. The advantage of our algorithm is that
it does not attempt any alignment, but rather clusters together regions with sim-
ilar statistics. The regions need not come in the same order, nor they need to
be identical. In addition there is no need in prior selection of groups of related
proteins, the algorithm finds them even in a bunch of unrelated stuff, as we will
show here. This is even more attracting since the algorithm may find some new
structure or correlations in the data we possibly have not thought about. Thus our
approach opens a new promising way to protein sequence analysis, classification
and functional annotation.

The paper is built in the following way. In Sec. 2 and Sec. 3 we describe the
algorithm from [SBTO1]. In Sec. 4 we apply the algorithm to the problem of seg-
mentation of a mixture of interchanging texts in 5 different European languages.
Here the model identified both the correct number of languages and the segmenta-
tion of the text between the languages with resolution of a few letters. In Sec. 5 we
show the results of [BSMTO01] work, where we apply the algorithm to the problem
of protein sequences classification. Here the algorithm was able to refine the HMM
superfamily classification and identify domains that appeared in a very small per-
cent of the input proteins (in one case only 12 proteins out of 396 input sequences).
Sec. 6 holds a discussion of the algorithm and the achieved results.

2 Single Source Modeling

In this section we will define VMM processes, review an efficient data structure for
their representation from [RST96] and a non-parametric learning algorithm from
[SBTO01] that is later used as a core for the segmentation process.

2.1 Variable Memory Markov Processes

Given a string Z, over a finite alphabet 3, that was sequentially generated by some
statistical source GG, the probability that G has generated that particular sequence
can always be written as: Pg(Z) = Pg(z1..xn) = [[i—, Po(zi|z1..w—1). In this
section we assume G to be stationary and ergodic [CT91]. We define a context of
z; to be any substring x; _,,..z;_1 for m > 0. If m = 0 we say that the context of
z; is the empty string, denoted by A. Further we define C' to be any finite subset
of strings in ¥* that includes A\. We say that x;—,,..x;—1, or A, is the C-context of
x; if it is the longest suffix of x1..x;—1 in C. Process G respects context set C' if
Pao(zi|zy..x5-1) = Pg(x;|C-context(x;)) for all i. The length of C-context(z;) is
the memory of process G at place i, and it may vary with 4.

2.2 Prediction Suffix Trees (PSTs)

A context set C' may be efficiently represented using a tree. By associating a
distribution vector over ¥ with each node of the tree we get a PST! (see Fig. 1).
Formally, a PST T is a |X|-ary tree that satisfies:

1. For each node each outgoing edge is labeled by a single symbol ¢ € ¥, while

LA Prediction Suffix Tree is related to, but differs from a classical suffix tree (see [AB00]).
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) r 1. T = Build_PST(z, @)
T (4‘25,05) : ®< 2. Prune(T, A)
(8:1:1:1.1) The two steps:
Figure 1: An example of a PST I. Build_PST (String &, Weights w)

over the alphabet ¥ = {a,b, k,[,r}.
The vector near each node is the
probability distribution for the next

1. Start with 7" having a single node A.
2. Recursively for each s € T'and 0 € &

symbol. E.g., the probability to If Size(os) < H(Ps) - w(os) Then
observe k after the substring bara, Add node os to T
whose largest suffix in the tree is ra, IL. Prune (Tree 7', node s)

is P(klbara) = Pro(k) = 0.4.
Recursively for each o € ¥ such that os € T':
1. Prune(os)
2. If TotalSize(Tys) > H(Ps) - w(os) Then
Delete subtree T,

Figure 2: PST learning algorithm.

there is at most one edge labeled by each symbol.

2. Each node of the tree is labeled by a unique string s (a context) that corresponds
to a 'walk’ starting from that node and ending in the root of the tree. We identify
nodes with their labels and label the root node by the empty string A.

3. A probability distribution vector Ps(o) is associated with each node s. Ps(o)
is the probability that a symbol o will come after the context s.

We define suf,(z;..z;) as the longest sequence x;_,..x; that makes a path in
T when we start from the root and traverse the edge labeled by z;, from there we
traverse the edge labeled by z;_; etc., until there is no appropriate edge to continue
with or we have traversed the whole string?. If there is no edge labeled by x; at the
root we say that suf,(z1..z;) = A. The collection of all node labels in T" make up
our set of memorized contexts.

2.3 Predicting and Generating using PSTs

Here we define the probability measure that a PST T induces on the space of all
strings Z € X", for any given n. Given a string Z € X" and a PST T the probability
that # was generated by T is:
n n
Pr(z) = [[ Pr(@iler.wi 1) = [[ Pous,y orowies) (@)
i=1 i=1
When T is used as a generator, it generates a symbol x; according to the distribution
PS

ufp(z1..zi—1)"

2.4 Learning PSTs

We now turn to describe the MDL driven algorithm for PST learning, presented
in [SBTO01]. The algorithm is non-parametric and exhibits self-regularization. It is

2Note that we do not necessarily stop at a leaf.



generalized to handle weighted data, which will appear later on.

The inputs to the algorithm are a string Z = z;..x,, and a vector of weights
W = wi..w,, where each w; is a weight associated with z; (0 < w; < 1)%. We will
denote w(z;) = w;. You may think of w(z;) as a measure of confidence we give to
the observation z;. For now you may assume all w; = 1.

For a string s we say that sx; € Z if it is a substring of Z ending at place i. We

define:
> wlw)

zr;=0 and ST;ET

ws (o)

and w(s) =) 5 ws(0). Clearly ";j((:)) is an empirical estimate for Ps(o).

The idea behind MDL is to minimize the total length (in bits) of model de-
scription together with the code length of the data when it is encoded using the
model. When coding a single node s we should enumerate its sons and encode the
distribution vector Ps. The first takes || bits - bit o denotes the presence of son o.
For the second it is sufficient to code all the counts w, (o). Since the total amount
of data “passing through” node s* is w(s) the counts should be coded to within
accuracy /w(s). Thus the description size of s is:

X

Size(s) = |Z| + > -logy(w(s))

Denoting by T the subtree of T rooted at node s:

Size(Ts) = Size(s) + Z Size(Ty,s)
oseT

(s € T means that s is a node in 7). The minimal average code length per sym-
bol, for all symbols coded using node s, is given by the entropy of Py, H(P;) =
=2 ex Ps(0) - logy(Ps(0)). The equivalent quantity for a subtree T is thus a
weighted sum given by:

HT) = W) g, + 3 “:U("S) - H(P,)

oseT

Summing this altogether we get:
TotalSize(Ts) = Size(Ts) + w(s) - H(Ty)

Our goal is to minimize TotalSize(A) which is the total description length of the
whole tree together with all coded data (as all data passes through the root node
A). The algorithm works in two steps. In step I we extend all the nodes that are
potentially beneficial, i.e. by using them we may decrease the total size. Clearly only
those nodes whose description size is smaller than the code length of data passing
through them when that data is coded using the parent node distribution are of
interest. In step II the tree is recursively pruned so that only truly beneficial nodes
remain. If a child subtree T, of some node s gives better compression (respecting its
own description length) than that of its parent node, that subtree is left, otherwise
it is pruned. The algorithm is given in Fig. 2

3Generalization to a set of multiple strings is straightforward and therefore omitted here for
ease of notation. See [RST96] for an example of such generalization on the original algorithm.
4suf(x1..a:i_1) ends with s.



3 Sequence Segmentation Algorithm

In this section we describe the unsupervised sequence segmentation algorithm, pre-
sented in [SBTO01]. We suppose that a given string & was generated by repeatedly
switching between several different PST models with some upper bound on the al-
ternation rate. L.e., there are k PSTs and a partition of Z into continuous segments,
such that each segment was generated by a single PST out of k. We assume that
the segments are significantly long, so that if we have trained a PST for each source
using all of its segments, we could say with high confidence about each segment
which model it belongs to. Our goal is to find £’ PST models and a segmentation
of Z that will be as close as possible to the original ones.

This problem is similar to the problem of finding the best number and parameters
for a Gaussian mixture model of points in R™. Given a string Z and a vector of
assignment probabilities we can build a PST model and estimate its parameters.
Alternatively, a given model induces probabilities on all substrings of Z. Alternating
between these two estimations is the essence of the EM algorithm in any mixture
model. This alternating estimation algorithm can be embedded in a deterministic
annealing (DA) procedure to allow for increasing resolution, or number of mixture
components. In our case, however, we do not allow our PST models to switch at
every symbol, but rather require continuous segments. The fundamental reason for
limiting the model switching frequency is that too short segments do not enable
reliable discrimination between different models. DA helps us to avoid many local
minima and provides an elegant framework for hierarchical structures (see [R0s98]).

Next we give some definitions and describe the Blahut-Arimoto and our soft clus-
tering algorithm. We then embed it in the DA framework to obtain the hierarchical
segmentation.

3.1 Definitions

Let 7 = {T;}%_, be the set of PSTs of size k we are currently working with. We
define w/(z;) = P(T}|z;) to be the probability that z; is assigned to model T}°.

In order to estimate the quality of a given partition we define a distance (local
distortion) between a symbol 2; and a model T} to be minus log likelihood of T} on
a window of size 2M + 1 around z;:

i+ M
d(z;,Tj) = — Y InPr(zalo1.2a 1) -
a=i—M

The role of the window is to smooth the segmentation and to enable reliable estima-
tion of the log-likelihood. The global distortion, i.e. the average distance between
segments and the corresponding models, of an assignment is given by:

n k
() =S 3 d(enTy) - P(Tyles)

i=1 j=1

3.2 The Blahut-Arimoto Algorithm

First we want to find the optimal assignment probabilities P(Tj|z;) for a fized set
of PST models 7T, constrained by the allowed distortion level D. Rate distortion

5The vector of weights w7 is later used to retrain T;.



Blahut-Arimoto(P(T), ()

Repeat until convergence:

e~ Bd(@i . Tj)
1. Vi j: P(Tj|n;) = =)

Soft_Clustering(7, P(Ty), 3)

E’:=1 P(T,)eAd(iTa)

2.Vj: P(Ty) =+ Y-, P(Tjla)

Repeat until convergence:

1. Blahut-Arimoto(P(Ty), B3)

2. Vj: T; = Learn PST(z, w/)

Figure 3: The BA algorithm

Figure 4: Soft Clustering

theory [CT91, Ch. 13] provides us with the optimal assignment via:

min I(z,T) (1)
{P(Ty]2:) : (d)<D,Y " P(Tjlwi)=1}

where I(z,7) = 13" | Zle P(Tj|z;) - log %ﬁlﬁ) is the mutual information be-
tween z and 7, and P(T}) = £ " | P(Tj|x;) is the proportion of data assigned to
model j. In rate distortion theory (1) is called the rate distortion function, R(D).

By minimizing the mutual information we in fact enable minimal description
length of the sequences using the PST models, subject to a given distortion con-
straint. Since our distortion, an expected log-likelihood, is also the optimal code
length by the model, it is fully consistent with the MDL framework. We thus try
to find a mixture of PSTs that enable short description of the complete observation
sequence, under some continuity requirements from the resulting segmentation.

We employ the alternating minimization procedure, known as the Blahut-Arimoto
(BA) algorithm, which is guaranteed to converge to the optimal assignment (see
Fig. 3). There the distortion constraint D is imposed by the corresponding La-
grange multiplier 3.

3.3 Soft Clustering

Now we go one step further by allowing to modify the PST models. This is anal-
ogous to the centroid re-estimation in clustering. We want to obtain a good (low
distortion) segmentation of Z for a given value of 3 (the assignment probabilities
are given by 1. in the BA algorithm).

We approach this problem using a soft clustering procedure. Given an initial set
of k PSTs T, we partition the sequence using the BA algorithm and then retrain
all k& PSTs, using the assignment probabilities P(T}|z;) obtained from the BA as
weight vectors @/ for the Learn_PST procedure. These two steps are repeated until
convergence (see Fig. 4). Here the Lagrange multiplier 3 plays the role of resolution
parameter and prevents from falling into local minima.

At every given distortion level D a limited number of PSTs K is sufficient
to achieve D. When k > K some of the PSTs collapse into a single model - a
phenomenon clearly described in [Ros98] - or remain without data (P(I}) = 0).
The latter is caused by the requirement of having continuous segments in the final
segmentation. Because of this requirement the competition between the models
“pushes out” the models who do not “acquire” enough data in favor of those having
more data. In this manner the algorithm “self regulates” its global complexity.



The segmentation algorithm:

1. For all i, w°(z;) = 1; Ty = Learn PST(z, @°) // Initialization
T = {T0}7 P(TO) =1, B = BO; kprev =0
2. While [T < 53747 // Annealing loop
(a) While |T] > kprev // If |T| not increased, increase 3
L. kprev = |T|

ii. Split_PSTs(T, P(T.))
iii. Soft_Clustering(7, P(Ty), )
iv. Remove all T} such that P(7;) =0 from 7.

(b) Increase

Figure 5: Unsupervised Sequence Segmentation Algorithm.

As appeared in practical applications, the algorithm achieves better results when
the BA loop is limited to a single pass. This gives the algorithm a possibility to
correct the current set of PSTs T while looking for the optimal segmentation of Z
(see [Sel01]).

3.4 DA and the Segmentation Algorithm

The landscape of the problem defined in this section is typically riddled with local
minima and it is computationally difficult to obtain the optimal solution. Usually a
successful way of finding a good solution is through DA: a series of solutions to the
soft clustering problem is found, starting from a low value of resolution parameter
B and gradually increasing it, while allowing models to split in two when necessary.

The splitting procedure is straightforward: for each PST 7" in T we create two
copies of 7" and perform random antisymmetric perturbations of the count vectors
in each node of the two copies. Then we replace T' with the two obtained PSTs
while distributing P(T") equally among them.

Now we are finally ready to outline the complete algorithm (see Fig. 5). We start
with 7 including a single “average” PST Ty that is trained on the whole sequence z
with w®(z;) = 1 for all i. We pick an initial value of 3, split 7 and proceed with the
soft clustering procedure when initialized with the two models we got after split.
We then split 7 again and repeat. If a model is found to have lost all its data it
is eliminated. When the number of survived models stops increasing we increase
and then repeat the whole process. [ is increased at most till the limit when the
clusters become one window size.

Sets of segments that are assigned with high probability to the same model over
a long range of g are stable clusters that contain important information about the
statistical structure of our sample.

4 Multilingual Text Segmentation

In our first example we construct a synthetic text composed of alternating fragments
of five other texts in five different languages: English, German, Italian, French and
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Russian, using standard transcripts to convert all into lower case Latin letters with
blank substituting all separators. The length of each fragment taken is 100 letters,
which means that we are switching languages every two sentences or so. The total
length of the text is 150000 letters (30000 from each language).

We made several independent runs of our algorithm. In every run, after 2000-
3000 accumulated innermost (BA) iterations we got a clear-cut, correct segmenta-
tion of the text into segments corresponding to the different languages, accurate up
to a few letters (See Fig. 6, 7 for a typical example)®. Moreover, in all runs further
splitting of all 5 language models resulted in starvation and subsequent removal of 5
extra models, taking us back to the same segmentation as before. Also, in most runs
linguistically similar languages (English and German, French and Italian) separated
at later stages of the segmentation process (Fig. 8 gives an example), suggesting a
hierarchical structure over the discovered data sources.

6Correct segmentation was achieved even at a switching rate of 50 letters per segment, but of
poorer quality.



5 Protein Sequences Classification

In this section we demonstrate the results of application of our algorithm to sev-
eral protein families. The different training sets were constructed using the Pfam
[BBD'00, release 5.4] and Swissprot [BA0O, release 38] databases. Various sequence
domain families were collected from Pfam. In each Pfam family all members share
a domain. An HMM detector is built for that domain based on an MSA of a seed
subset of the family domain regions. The HMM is then verified to detect that do-
main in the remaining family members. Multi-domain proteins therefore belong to
as many Pfam families as there are different characterized domains within them. In
order to build realistic, more heterogeneous sets, we collected from Swissprot the
complete sequences of all chosen Pfam families. Each set now contains a certain
domain in all its members, and possibly various other domains appearing anywhere
within some members.

There were two types of PST models we got in the process of clustering of the
protein data: models that significantly outperform others on relatively short re-
gions - these we call detectors; and models that perform averagely over all sequence
regions - these are “protein noise” models. In what is following we analyse what
kind of protein segments were selected by the detectors on three exemplary fami-
lies. In general the “highlighted” segments may be characterized as “segments with
highly conserved statistics (sequence), common to at least small amount of the input
proteins”. Being such, the detected segments may be seen as signatures (or finger-
prints) of the domains, though in the cases of very conserved domains the complete
domain may be covered by detector(s). The conservation usually indicates the key
importance of the detected segment for the functioning of the whole domain. The
amount (or percentage) of proteins sharing a similar segment among all the input
proteins may be miserable and the similarity will still be found (in one example we
have a domain that is common to only 12 out of 396 input proteins, and it still was
altered). This is a clear and strong advantage of our approach compared to MSA,
as will be demonstrated here.

In all the following examples we made several independent runs on each cho-
sen family. For each family the different runs converged to the same final (stable)
segmentation. In the presented graphs we show the segmentation of single repre-
sentative protein sequences out of the explored families. The Swissprot accession
number of the representative sequences shown will be written at the top of each
graph.

The Pax Family

Pax proteins (reviewed in [SKG94]) are eukaryotic transcriptional regulators that
play critical roles in mammalian development and in oncogenesis. All of them
contain a conserved domain of 128 amino acids called the paired or paired box
domain (named after the drosophila paired gene which is a member of the family).
Some contain an additional homeobox domain that succeeds the paired domain.
Pfam nomenclature names the paired domain “PAX”.

The Pax proteins show a high degree of sequence conservation. One hundred and
sixteen family members were used as a training set for the segmentation algorithm.
In Fig. 9 we superimpose the prediction of all resulting PST detectors over one
representative family member. This Pax6 SS protein contains both the paired and
homeobox domains. Both have matching signatures. This also serves as an example
where the signatures exactly overlap the domains. The graph of family members not

10
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Figure 9: Paired/PAX 4 homeobox
signatures. The graph shows the segmen-
tation of PAX6 SS protein we got. At the
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Figure 10: Pax MSA profile conserva-
tion. We plot the clustal X conservation
score of the PAX6 SS protein against an
MSA of all Pax proteins. While the pre-
dominant paired/PAX domain is discerned,
the homeobox domain (appearing in about
half the sequences) is lost in the background
noise.

having the homeobox domain contains only the paired domain signature. Note that
only about half of the proteins contain the homeobox domain and yet its signature
is very clear.

DNA Topoisomerase I1

Type IT DNA topoisomerases are essential and highly conserved in all living organ-
isms (see [Roc95] for a review). They catalyze the interconversion of topological
isomers of DNA and are involved in a number of mechanisms, such as supercoil-
ing and relaxation, knotting and unknotting, and catenation and decatenation. In
prokaryotes the enzyme is represented by the Escherichia coli gyrase, which is en-
coded by two genes, gyrase A and gyrase B. The enzyme is a tetramer composed
of two gyrA and two gyrB polypeptide chains. In eukaryotes the enzyme acts as a
dimer, where in each monomer two distinct domains are observed. The N-terminal
domain is similar in sequence to gyrase B and the C-terminal domain is similar in
sequence to gyraseA (Fig. 11.a). In Pfam 5.4 terminology gyrB and the N-terminal
domain belong in the “DNA _topoisoll” family”, while gyrA and the C-terminal do-
main belong in the “DNA _topoisolV” family®. Here we term the pairs gyrB/topoll
and gyrA /topolV.

For the analysis we used a group of 164 sequences that included both eukary-
otic topoisomerase II sequences and bacterial gyrase A and B sequences (gathered
from the union of the DNA _topoisoll and DNA _topoisolV Pfam 5.4 families). We
successfully differentiate them into sub-classes. Fig. 11.d describes a representa-
tive of the eukaryotic topoisomerase II sequences and shows the signatures for both
domains, gyrB/topoll and gyrA /topoIV. Fig. 11.b and Fig. 11.c demonstrate the
results for representatives of the bacterial gyrase B and gyrase A proteins, respec-
tively. The same two signatures are found in all three sequences, at the appropriate

7 Apparently this family has been sub-divided in Pfam 6 releases.
8The name should not be confused with the special type of topoisomerase II found in bacteria,
that is also termed topoisomerase IV, and plays a role in chromosome segregation.
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Figure 11: DNA topoisomerase II. (a) - Fusion event illustration, adapted from
[MPN*99]. The Pfam domain names are added in brackets, together with a reference
to our results on a representative homolog. Compare the PST signatures in figures (b)-(d)
with the schematic drawing in (a). It is clear that the eukaryotic signature is indeed com-
posed of the two prokaryotic ones, in the correct order, omitting the C-terminus signature
of gyrase B (short termed here as “Gyr”).

locations. Interestingly, in Fig. 11.b in addition to the signature of the gyrB/topoll
domain another signature appears at the C-terminal region of the sequence. This
signature is compatible with a known conserved region at the C-terminus of gyrase
B,? that is involved in the interaction with the gyrase A molecule.

The relationship between the E. coli proteins gyrA and gyrB and the yeast
topoisomerase II (Fig. 11.a) provides a prototypical example of a fusion event of
two proteins that form a complex in one organism into one protein that carries a
similar function in another organism. Such examples have lead to the idea that
identification of those similarities may suggest the relationship between the first
two proteins, either by physical interaction or by their involvement in a common
pathway. The computational scheme we present can be useful in search for these
relationships.

9Corresponding to the Pfam “DNA _gyraseB_C” family.
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The Glutathione S-Transferases (GST)

The glutathione S-transferases (GST) represent a major group of detoxification
enzymes (reviewed in [HP95]). There is evidence that the level of expression of
GST is a crucial factor in determining the sensitivity of cells to a broad spectrum of
toxic chemicals. All eukaryotic species possess multiple cytosolic GST isoenzymes,
each of which displays distinct binding properties. A large number of cytosolic GST
isoenzymes have been purified from rat and human organs. On the basis of their
sequences they have been clustered into five separate classes designated class alpha,
mu, pi, sigma, and theta GST. The hypothesis that these classes represent separate
families of GST is supported by the distinct structure of their genes and their
chromosomal location. The class terminology is deliberately global, attempting to
include as many GSTs as possible. However, it is possible that there are sub-classes
that are specific to a given organism or a group of organisms. In those sub-classes
the proteins may share more than 90% sequence identity, but these relationships
are masked by their inclusion in the more global class. The classification of a GST
protein with weak similarity to one of these classes is sometimes a difficult task.
In particular, the definition of the sigma and theta classes is imprecise. Indeed in
the PRINTS [ACFT00] database only the three classes, alpha, pi, and mu have
been defined by distinct sequence signatures, while in Pfam all GSTs are clustered
together, for lack of sequence dissimilarity.

Three hundred and ninety six Pfam family members were segmented jointly
by our algorithm, and the results were compared to those of PRINTS (as Pfam
classifies all as GSTs). Five distinct signatures were found (not shown due to space
limitations): (1) A typical weak signature common to many GST proteins that
contain no sub-class annotation. (2) A sharp peak after the end of the GST domain
appearing exactly in all 12 out of 396 (3%) proteins where the elongation factor 1
gamma (EF1G) domain succeeds the GST domain. (3) A clear signature common
to almost all PRINTS annotated alpha and most pi GSTs. The last two signatures
require more knowledge of the GST superfamily. (4) The theta and sigma classes
are abundant in nonvertebrates. As more and more of these proteins are identified it
is expected that additional classes will be defined. The first evidence for a separate
sigma class was obtained by sequence alignments of S-crystallins from mollusc lens.
Although these refractory proteins in the lens probably do not have a catalytic
activity they show a degree of sequence similarity to the GSTs that justifies their
inclusion in this family and their classification as a separate class of sigma [BE92].
This class, defined in PRINTS as S-crystallin, was almost entirely identified by the
fourth distinct signature. (5) Interestingly, the last distinct signature, is composed
of two detector models, one from each of the previous two signatures (alpha + pi
and S-crystallin). Most of these two dozens proteins come from insects, and of these
most are annotated to belong to the theta class. Note that many of the GSTs in
insects are known to be only very distantly related to the five mammalian classes.
This putative theta sub-class, the previous signatures and the undetected PRINTS
mu sub class are all currently further investigated.

Comparative results

In order to evaluate our findings we have performed three unsupervised alignment
driven experiments using the same sets described above: an MSA was computed for
each set using clustal X [JTG'98, Linux version 1.81]. We let clustal X compare the
level of conservation between individual sequences and the computed MSA profile
in each set. Qualitatively these graphs resemble ours, apart from the fact that they
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do not offer separation into distinct models.

We briefly recount some results: the Pax alignment did not clearly elucidate the
homeobox domain existing in about half the sequences (see Fig. 10). For type II
topoisomerases the Gyrase B C-terminus unit from Fig. 11.b can be discerned from
the main unit, but with a much lower peak. And the clear sum of two signatures we
obtained for the eukaryotic sequences (Fig. 11.d) is lost. In the last and hardest case
the MSA approach tells us nothing. All GST domain graphs look nearly identical
precluding any possible subdivision. And the 12 (out of 396) instances of the EF1G
domain are completely lost at the alignment phase.

6 Discussion

The sequence segmentation algorithm we describe and evaluate in this paper is a
combination of several different information theoretic ideas and principles, naturally
combined into one new coherent procedure. The core algorithm, the construction of
PST, is essentially a source coding loss-less compression method. It approximates
a complex stochastic sequence by a Markov model with variable memory length.
The power of this procedure, as demonstrated on both natural texts and on protein
sequences [RST96, BY01], is in its ability to capture short strings (suffixes) that are
significant predictors - thus good features - for the statistical source. We combine
the PST construction with another information theoretic idea - the MDL principle
- and obtain a more efficient estimation of the PST, compared with its original
learning algorithm.

Our second key idea is to embed the PST construction in a lossy compression
framework by adopting the rate-distortion theory into a competitive learning pro-
cedure. Here we treat the PST as a model of a single statistical source and use the
rate distortion framework (the BA algorithm) to partition the sequences between
several such models in an optimal way. Here we specifically obtain a more expressive
statistical model, as miztures of (short memory, ergodic) Markov models lay out-
side of this class, and can be captured only by much deeper Markov models. This
is a clear advantage of our current approach over mixtures of HMMs (as done in
[FST98]) since mixtures of HMMs are just HMMs with constrained state topology.

The analogy with rate-distortion theory enables us to take advantage of the
trade-off between compression (rate) and distortion, and use the Lagrange multiplier
[, required to implement this trade-off, as a resolution parameter. The deterministic
annealing framework follows naturally in this formulation and provides us with a
simple way to obtain hierarchical segmentation of very complex sequences. As long
as the underlying statistical sources are distinct enough, compared to the average
alternation rate between them, our segmentation scheme should perform well.

Our experiments with protein families demonstrated a number of clear advan-
tages of the proposed algorithm: it is fully automated; it does not require or attempt
an MSA of the input sequences; it handles heterogeneous groups well and locates
domains appearing only few times in the data; by nature it is not confused by dif-
ferent module orderings within the input sequences; it appears to seldom generate
false positives; and it is shown to surpass HMM clustering in at least one hard in-
stance. Together with the tremendous success on the multilingual text data we get
a strong evidence that our algorithm is a new powerful tool for sequence analysis
that worth further development and examination on additional types of data.
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