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tWe des
ribe a novel algorithm for unsupervised segmentation of sequen
esinto alternating Variable Memory Markov sour
es, �rst presented in [SBT01℄.The algorithm is based on 
ompetitive learning between Markov models, whenimplemented as Predi
tion SuÆx Trees [RST96℄ using the MDL prin
iple. Byapplying a model 
lustering pro
edure, based on rate distortion theory 
om-bined with deterministi
 annealing, we obtain a hierar
hi
al segmentation ofsequen
es between alternating Markov sour
es. The method is applied su
-
essfully to unsupervised segmentation of multilingual texts into languageswhere it is able to infer 
orre
tly both the number of languages and the lan-guage swit
hing points. When applied to protein sequen
e families (resultsof the [BSMT01℄ work), we demonstrate the method's ability to identify bi-ologi
ally meaningful sub-sequen
es within the proteins, whi
h 
orrespond tosignatures of important fun
tional sub-units 
alled domains. Our approa
hto proteins 
lassi�
ation (through the obtained signatures) is shown to haveboth 
on
eptual and pra
ti
al advantages over the 
urrently used methods.1 Introdu
tionUnsupervised segmentation of sequen
es has be
ome a fundamental problem withmany important appli
ations su
h as analysis of texts, handwriting and spee
h, neu-ral spike trains and bio-mole
ular sequen
es. The most 
ommon statisti
al approa
hto this problem, using hidden Markov models (HMM), was originally developed forthe analysis of spee
h signals, but be
ame the method of 
hoi
e for statisti
al seg-mentation of most natural sequen
es. HMMs are prede�ned parametri
 models -their ar
hite
ture and topology are predetermined and the memory is limited to�rst order in most 
ommon appli
ations. The su

ess of HMMs thus 
ru
ially de-pends on the 
orre
t 
hoi
e of the state model. It is rather diÆ
ult to generalizethese models to hierar
hi
al stru
tures with unknown a-priory state-topology (see[FST98℄ for an attempt).An interesting alternative to the HMM was proposed in [RST96℄ in the form ofa sub 
lass of probabilisti
 �nite automata, the variable memory Markov (VMM)sour
es. These models have several important advantages over the HMMs: (i) they
apture longer 
orrelations and higher order statisti
s of the sequen
e; (ii) they�Supported by a grant from the Ministry of S
ien
e, Israel1




an be learned in a provably optimal PAC like sense using a 
onstru
tion 
alledpredi
tion suÆx tree (PST) [RST96℄; (iii) they 
an be learned eÆ
iently by lineartime algorithm [AB00℄; and (iv) their topology and 
omplexity are determined bythe data.In the �rst half of the paper we review a powerful extension of the VMM modeland the PST algorithm to a sto
hasti
 mixture of su
h models, suggested in [SBT01℄.The algorithm learns the models in a hierar
hi
al 
ompetitive way using a determin-isti
 annealing (DA) [Ros98℄ approa
h. The problem is generally 
omputationallyhard, similarly to data 
lustering. Only very simple sequen
es 
an be 
orre
tly seg-mented eÆ
iently in general [FR95℄. Our model 
an in fa
t be viewed as an HMMwith a VMM atta
hed to ea
h state, but the learning algorithm allows a 
ompletelyadaptive stru
ture and topology both for ea
h state and for the whole model. Theapproa
h we take is information theoreti
 in nature. The goal is to enable shortdes
ription of the data by a (soft) mixture of VMM models, ea
h one 
ontrolled byan MDL prin
iple (see [BRY98℄ for a review). This we do by modifying the originalPST algorithm using the MDL formulation, while preserving its good learnabilityproperties. The mixture model is then learned via a generalized rate distortiontheory (see [CT91, Ch. 13℄) approa
h. Here we take the log-likelihood of the databy ea
h model as an e�e
tive distortion measure between the sequen
e and its rep-resentative model and apply the Blahut-Arimoto (BA) algorithm (see [CT91℄) tooptimally partition the sequen
e(s) between the VMM model 
entroids. Just like inmany 
lustering algorithms we then update the models based on this optimal par-tition of the sequen
e(s). In this way a natural resolution parameter is introdu
edthrough the 
onstraint on the expe
ted tolerated distortion. This \temperature"like Lagrange multiplier is further used in the deterministi
 annealing loop to 
on-trol the resolution of the model. The hierar
hi
al stru
ture is obtained by allowingthe models to split (the re�nement step) after 
onvergen
e of the iterations betweenthe BA algorithm and the VMM 
entroids update. The algorithm exhibits severalinteresting features that will be only mentioned here due to spa
e limitations. Theirdis
ussion is left to [Sel01℄.In the se
ond part of the paper we 
ite the results of an interesting appli
ationof the algorithm to the problem of protein sequen
es 
lassi�
ation, mainly takenfrom the [BSMT01℄ work. The fun
tion of a protein is determined by its sequen
e.Numerous proteins exhibit a modular ar
hite
ture, 
onsisting of several sequen
edomains that often 
arry spe
i�
 biologi
al fun
tions (reviewed in [BK96℄). For pro-teins whose stru
ture has been solved, it 
an be shown that in many 
ases the 
har-a
terized sequen
e domains are asso
iated with autonomous stru
tural domains. Inproteins of various organisms we �nd domains that are responsible for similar bio-
hemi
al fun
tionality. The sequen
es of those domains are usually resembling, butnot identi
al. Chara
terization of a protein family by its distin
t sequen
e domainseither dire
tly or through the use of domain 'motifs', or 'signatures' (short sub-segments of the domain that are typi
al for most members of that family) is 
ru
ialfor fun
tional annotation and 
orre
t 
lassi�
ation of newly dis
overed proteins.Many methods have been proposed for 
lassi�
ation of proteins based on theirsequen
e 
hara
teristi
s. Most of them are based on a seed multiple sequen
e align-ment (MSA) of proteins that are known to be related (see [DEKM98℄). Theystrongly rely on the initial sele
tion of the related protein segments for the MSA,usually hand 
rafted by experts, and on the quality of the MSA itself. Besides be-ing in general 
omputationally intra
table, when remote sequen
es are in
luded ina group of related proteins, establishment of a good MSA 
eases to be an easy taskand delineation of the domain boundaries proves even harder. This be
omes nearly2



impossible for heterogeneous groups where the shared motifs are not ne
essarilyabundant or do not 
ome in the same order.In the earlier work of [BY01℄ PSTs were shown to be a powerful tool for su-pervised 
lassi�
ation of proteins. This work extends our abilities by allowing toperform this task in unsupervised manner. The advantage of our algorithm is thatit does not attempt any alignment, but rather 
lusters together regions with sim-ilar statisti
s. The regions need not 
ome in the same order, nor they need tobe identi
al. In addition there is no need in prior sele
tion of groups of relatedproteins, the algorithm �nds them even in a bun
h of unrelated stu�, as we willshow here. This is even more attra
ting sin
e the algorithm may �nd some newstru
ture or 
orrelations in the data we possibly have not thought about. Thus ourapproa
h opens a new promising way to protein sequen
e analysis, 
lassi�
ationand fun
tional annotation.The paper is built in the following way. In Se
. 2 and Se
. 3 we des
ribe thealgorithm from [SBT01℄. In Se
. 4 we apply the algorithm to the problem of seg-mentation of a mixture of inter
hanging texts in 5 di�erent European languages.Here the model identi�ed both the 
orre
t number of languages and the segmenta-tion of the text between the languages with resolution of a few letters. In Se
. 5 weshow the results of [BSMT01℄ work, where we apply the algorithm to the problemof protein sequen
es 
lassi�
ation. Here the algorithm was able to re�ne the HMMsuperfamily 
lassi�
ation and identify domains that appeared in a very small per-
ent of the input proteins (in one 
ase only 12 proteins out of 396 input sequen
es).Se
. 6 holds a dis
ussion of the algorithm and the a
hieved results.2 Single Sour
e ModelingIn this se
tion we will de�ne VMM pro
esses, review an eÆ
ient data stru
ture fortheir representation from [RST96℄ and a non-parametri
 learning algorithm from[SBT01℄ that is later used as a 
ore for the segmentation pro
ess.2.1 Variable Memory Markov Pro
essesGiven a string �x, over a �nite alphabet �, that was sequentially generated by somestatisti
al sour
e G, the probability that G has generated that parti
ular sequen
e
an always be written as: PG(�x) = PG(x1::xn) = Qni=1 PG(xijx1::xi�1). In thisse
tion we assume G to be stationary and ergodi
 [CT91℄. We de�ne a 
ontext ofxi to be any substring xi�m::xi�1 for m � 0. If m = 0 we say that the 
ontext ofxi is the empty string, denoted by �. Further we de�ne C to be any �nite subsetof strings in �� that in
ludes �. We say that xi�m::xi�1, or �, is the C-
ontext ofxi if it is the longest suÆx of x1::xi�1 in C. Pro
ess G respe
ts 
ontext set C ifPG(xijx1::xi�1) = PG(xijC-
ontext(xi)) for all i. The length of C-
ontext(xi) isthe memory of pro
ess G at pla
e i, and it may vary with i.2.2 Predi
tion SuÆx Trees (PSTs)A 
ontext set C may be eÆ
iently represented using a tree. By asso
iating adistribution ve
tor over � with ea
h node of the tree we get a PST1 (see Fig. 1).Formally, a PST T is a j�j-ary tree that satis�es:1. For ea
h node ea
h outgoing edge is labeled by a single symbol � 2 �, while1A Predi
tion SuÆx Tree is related to, but di�ers from a 
lassi
al suÆx tree (see [AB00℄).3
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(.05,.25,.4,.25,.05)(.1,.1,.35,.35,.1)Figure 1: An example of a PSTover the alphabet � = fa; b; k; l; rg.The ve
tor near ea
h node is theprobability distribution for the nextsymbol. E.g., the probability toobserve k after the substring bara,whose largest suÆx in the tree is ra,is P (kjbara) = Pra(k) = 0:4.
Learn PST(String �x, Weights �w)1. T = Build PST(�x, �w)2. Prune(T , �)The two steps:I. Build PST (String �x, Weights �w)1. Start with T having a single node �.2. Re
ursively for ea
h s 2 T and � 2 �If Size(�s) < H(Ps) � w(�s) ThenAdd node �s to T .II. Prune (Tree T , node s)Re
ursively for ea
h � 2 � su
h that �s 2 T :1. Prune(�s)2. If TotalSize(T�s) > H(Ps) �w(�s) ThenDelete subtree T�sFigure 2: PST learning algorithm.there is at most one edge labeled by ea
h symbol.2. Ea
h node of the tree is labeled by a unique string s (a 
ontext) that 
orrespondsto a 'walk' starting from that node and ending in the root of the tree. We identifynodes with their labels and label the root node by the empty string �.3. A probability distribution ve
tor Ps(�) is asso
iated with ea
h node s. Ps(�)is the probability that a symbol � will 
ome after the 
ontext s.We de�ne sufT (x1::xi) as the longest sequen
e xi�m::xi that makes a path inT when we start from the root and traverse the edge labeled by xi, from there wetraverse the edge labeled by xi�1 et
., until there is no appropriate edge to 
ontinuewith or we have traversed the whole string2. If there is no edge labeled by xi at theroot we say that sufT (x1::xi) = �. The 
olle
tion of all node labels in T make upour set of memorized 
ontexts.2.3 Predi
ting and Generating using PSTsHere we de�ne the probability measure that a PST T indu
es on the spa
e of allstrings �x 2 �n, for any given n. Given a string �x 2 �n and a PST T the probabilitythat �x was generated by T is:PT (�x) = nYi=1PT (xijx1::xi�1) = nYi=1PsufT (x1::xi�1)(xi)When T is used as a generator, it generates a symbol xi a

ording to the distributionPsufT (x1::xi�1).2.4 Learning PSTsWe now turn to des
ribe the MDL driven algorithm for PST learning, presentedin [SBT01℄. The algorithm is non-parametri
 and exhibits self-regularization. It is2Note that we do not ne
essarily stop at a leaf.4



generalized to handle weighted data, whi
h will appear later on.The inputs to the algorithm are a string �x = x1::xn and a ve
tor of weights�w = w1::wn, where ea
h wi is a weight asso
iated with xi (0 � wi � 1)3. We willdenote w(xi) � wi. You may think of w(xi) as a measure of 
on�den
e we give tothe observation xi. For now you may assume all wi = 1.For a string s we say that sxi 2 �x if it is a substring of �x ending at pla
e i. Wede�ne: ws(�) � Xxi=� and sxi2�xw(xi)and w(s) �P�2� ws(�). Clearly ws(�)w(s) is an empiri
al estimate for Ps(�).The idea behind MDL is to minimize the total length (in bits) of model de-s
ription together with the 
ode length of the data when it is en
oded using themodel. When 
oding a single node s we should enumerate its sons and en
ode thedistribution ve
tor Ps. The �rst takes j�j bits - bit � denotes the presen
e of son �.For the se
ond it is suÆ
ient to 
ode all the 
ounts ws(�). Sin
e the total amountof data \passing through" node s4 is w(s) the 
ounts should be 
oded to withina

ura
y pw(s). Thus the des
ription size of s is:Size(s) = j�j+ j�j2 � log2(w(s))Denoting by Ts the subtree of T rooted at node s:Size(Ts) = Size(s) + X�s2T Size(T�s)(s 2 T means that s is a node in T ). The minimal average 
ode length per sym-bol, for all symbols 
oded using node s, is given by the entropy of Ps, H(Ps) ��P�2� Ps(�) � log2(Ps(�)). The equivalent quantity for a subtree Ts is thus aweighted sum given by:H(Ts) = X�s2T w(�s)w(s) �H(T�s) + X�s=2T w(�s)w(s) �H(Ps)Summing this altogether we get:TotalSize(Ts) = Size(Ts) + w(s) �H(Ts)Our goal is to minimize TotalSize(�) whi
h is the total des
ription length of thewhole tree together with all 
oded data (as all data passes through the root node�). The algorithm works in two steps. In step I we extend all the nodes that arepotentially bene�
ial, i.e. by using them wemay de
rease the total size. Clearly onlythose nodes whose des
ription size is smaller than the 
ode length of data passingthrough them when that data is 
oded using the parent node distribution are ofinterest. In step II the tree is re
ursively pruned so that only truly bene�
ial nodesremain. If a 
hild subtree T�s of some node s gives better 
ompression (respe
ting itsown des
ription length) than that of its parent node, that subtree is left, otherwiseit is pruned. The algorithm is given in Fig. 23Generalization to a set of multiple strings is straightforward and therefore omitted here forease of notation. See [RST96℄ for an example of su
h generalization on the original algorithm.4suf(x1::xi�1) ends with s. 5



3 Sequen
e Segmentation AlgorithmIn this se
tion we des
ribe the unsupervised sequen
e segmentation algorithm, pre-sented in [SBT01℄. We suppose that a given string �x was generated by repeatedlyswit
hing between several di�erent PST models with some upper bound on the al-ternation rate. I.e., there are k PSTs and a partition of �x into 
ontinuous segments,su
h that ea
h segment was generated by a single PST out of k. We assume thatthe segments are signi�
antly long, so that if we have trained a PST for ea
h sour
eusing all of its segments, we 
ould say with high 
on�den
e about ea
h segmentwhi
h model it belongs to. Our goal is to �nd k0 PST models and a segmentationof �x that will be as 
lose as possible to the original ones.This problem is similar to the problem of �nding the best number and parametersfor a Gaussian mixture model of points in Rn. Given a string �x and a ve
tor ofassignment probabilities we 
an build a PST model and estimate its parameters.Alternatively, a given model indu
es probabilities on all substrings of �x. Alternatingbetween these two estimations is the essen
e of the EM algorithm in any mixturemodel. This alternating estimation algorithm 
an be embedded in a deterministi
annealing (DA) pro
edure to allow for in
reasing resolution, or number of mixture
omponents. In our 
ase, however, we do not allow our PST models to swit
h atevery symbol, but rather require 
ontinuous segments. The fundamental reason forlimiting the model swit
hing frequen
y is that too short segments do not enablereliable dis
rimination between di�erent models. DA helps us to avoid many lo
alminima and provides an elegant framework for hierar
hi
al stru
tures (see [Ros98℄).Next we give some de�nitions and des
ribe the Blahut-Arimoto and our soft 
lus-tering algorithm. We then embed it in the DA framework to obtain the hierar
hi
alsegmentation.3.1 De�nitionsLet T = fTjgkj=1 be the set of PSTs of size k we are 
urrently working with. Wede�ne wj(xi) � P (Tj jxi) to be the probability that xi is assigned to model Tj5.In order to estimate the quality of a given partition we de�ne a distan
e (lo
aldistortion) between a symbol xi and a model Tj to be minus log likelihood of Tj ona window of size 2M + 1 around xi:d(xi; Tj) = � i+MX�=i�M lnPTj (x�jx1::x��1) :The role of the window is to smooth the segmentation and to enable reliable estima-tion of the log-likelihood. The global distortion, i.e. the average distan
e betweensegments and the 
orresponding models, of an assignment is given by:hdi = 1n nXi=1 kXj=1 d(xi; Tj) � P (Tj jxi) :3.2 The Blahut-Arimoto AlgorithmFirst we want to �nd the optimal assignment probabilities P (Tj jxi) for a �xed setof PST models T , 
onstrained by the allowed distortion level D. Rate distortion5The ve
tor of weights �wj is later used to retrain Tj .6



Blahut-Arimoto(P (T�), �)Repeat until 
onvergen
e:1. 8i; j : P (Tj jxi) = P (Tj )e��d(xi;Tj )Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)Figure 3: The BA algorithm
Soft Clustering(T , P (T�), �)Repeat until 
onvergen
e:1. Blahut-Arimoto(P (T�), �)2. 8j : Tj = Learn PST(�x, �wj)Figure 4: Soft Clusteringtheory [CT91, Ch. 13℄ provides us with the optimal assignment via:minfP (Tj jxi) : hdi�D;Pkj=1 P (Tj jxi)=1g I(�x; T ) (1)where I(�x; T ) = 1nPni=1Pkj=1 P (Tj jxi) � log P (Tj jxi)P (Tj ) is the mutual information be-tween �x and T , and P (Tj) = 1nPni=1 P (Tj jxi) is the proportion of data assigned tomodel j. In rate distortion theory (1) is 
alled the rate distortion fun
tion, R(D).By minimizing the mutual information we in fa
t enable minimal des
riptionlength of the sequen
es using the PST models, subje
t to a given distortion 
on-straint. Sin
e our distortion, an expe
ted log-likelihood, is also the optimal 
odelength by the model, it is fully 
onsistent with the MDL framework. We thus tryto �nd a mixture of PSTs that enable short des
ription of the 
omplete observationsequen
e, under some 
ontinuity requirements from the resulting segmentation.We employ the alternating minimization pro
edure, known as the Blahut-Arimoto(BA) algorithm, whi
h is guaranteed to 
onverge to the optimal assignment (seeFig. 3). There the distortion 
onstraint D is imposed by the 
orresponding La-grange multiplier �.3.3 Soft ClusteringNow we go one step further by allowing to modify the PST models. This is anal-ogous to the 
entroid re-estimation in 
lustering. We want to obtain a good (lowdistortion) segmentation of �x for a given value of � (the assignment probabilitiesare given by 1: in the BA algorithm).We approa
h this problem using a soft 
lustering pro
edure. Given an initial setof k PSTs T , we partition the sequen
e using the BA algorithm and then retrainall k PSTs, using the assignment probabilities P (Tj jxi) obtained from the BA asweight ve
tors �wj for the Learn PST pro
edure. These two steps are repeated until
onvergen
e (see Fig. 4). Here the Lagrange multiplier � plays the role of resolutionparameter and prevents from falling into lo
al minima.At every given distortion level D a limited number of PSTs K is suÆ
ientto a
hieve D. When k > K some of the PSTs 
ollapse into a single model - aphenomenon 
learly des
ribed in [Ros98℄ - or remain without data (P (Tj) = 0).The latter is 
aused by the requirement of having 
ontinuous segments in the �nalsegmentation. Be
ause of this requirement the 
ompetition between the models\pushes out" the models who do not \a
quire" enough data in favor of those havingmore data. In this manner the algorithm \self regulates" its global 
omplexity.7



The segmentation algorithm:1. For all i, w0(xi) = 1; T0 = Learn PST(�x, �w0) // InitializationT = fT0g, P (T0) = 1, � = �0, kprev = 02. While jT j < n2M+1 // Annealing loop(a) While jT j > kprev // If jT j not in
reased, in
rease �i. kprev = jT jii. Split PSTs(T , P (T�))iii. Soft Clustering(T , P (T�), �)iv. Remove all Tj su
h that P (Tj) = 0 from T .(b) In
rease �Figure 5: Unsupervised Sequen
e Segmentation Algorithm.As appeared in pra
ti
al appli
ations, the algorithm a
hieves better results whenthe BA loop is limited to a single pass. This gives the algorithm a possibility to
orre
t the 
urrent set of PSTs T while looking for the optimal segmentation of �x(see [Sel01℄).3.4 DA and the Segmentation AlgorithmThe lands
ape of the problem de�ned in this se
tion is typi
ally riddled with lo
alminima and it is 
omputationally diÆ
ult to obtain the optimal solution. Usually asu

essful way of �nding a good solution is through DA: a series of solutions to thesoft 
lustering problem is found, starting from a low value of resolution parameter� and gradually in
reasing it, while allowing models to split in two when ne
essary.The splitting pro
edure is straightforward: for ea
h PST T in T we 
reate two
opies of T and perform random antisymmetri
 perturbations of the 
ount ve
torsin ea
h node of the two 
opies. Then we repla
e T with the two obtained PSTswhile distributing P (T ) equally among them.Now we are �nally ready to outline the 
omplete algorithm (see Fig. 5). We startwith T in
luding a single \average" PST T0 that is trained on the whole sequen
e �xwith w0(xi) = 1 for all i. We pi
k an initial value of �, split T and pro
eed with thesoft 
lustering pro
edure when initialized with the two models we got after split.We then split T again and repeat. If a model is found to have lost all its data itis eliminated. When the number of survived models stops in
reasing we in
rease �and then repeat the whole pro
ess. � is in
reased at most till the limit when the
lusters be
ome one window size.Sets of segments that are assigned with high probability to the same model overa long range of � are stable 
lusters that 
ontain important information about thestatisti
al stru
ture of our sample.4 Multilingual Text SegmentationIn our �rst example we 
onstru
t a syntheti
 text 
omposed of alternating fragmentsof �ve other texts in �ve di�erent languages: English, German, Italian, Fren
h and8
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e separation. The pro-portion of text assigned to ea
h model is

shown for all models as a fun
tion of the it-erations of our innermost loop. Bifur
ationsare the splitting events and 
urves droppingo� to zero are models dying out. In
rementsin � o

ur after the number of models 
on-verges at a given temperature. Languages
aptured by ea
h model after the soft 
lus-tering 
onvergen
e are pointed out. Noti
ehow the order in whi
h the languages sepa-rate from the primary joint model mat
heslanguage relatedness. Unlike in a similargraph in [SBT01℄, here we limit the BA loopto single pass. The /-like 
urves after bifur-
ations (unlike <-like in [SBT01℄) indi
ate amore thorough sear
h over possible T -s.Russian, using standard trans
ripts to 
onvert all into lower 
ase Latin letters withblank substituting all separators. The length of ea
h fragment taken is 100 letters,whi
h means that we are swit
hing languages every two senten
es or so. The totallength of the text is 150000 letters (30000 from ea
h language).We made several independent runs of our algorithm. In every run, after 2000-3000 a

umulated innermost (BA) iterations we got a 
lear-
ut, 
orre
t segmenta-tion of the text into segments 
orresponding to the di�erent languages, a

urate upto a few letters (See Fig. 6, 7 for a typi
al example)6. Moreover, in all runs furthersplitting of all 5 language models resulted in starvation and subsequent removal of 5extra models, taking us ba
k to the same segmentation as before. Also, in most runslinguisti
ally similar languages (English and German, Fren
h and Italian) separatedat later stages of the segmentation pro
ess (Fig. 8 gives an example), suggesting ahierar
hi
al stru
ture over the dis
overed data sour
es.6Corre
t segmentation was a
hieved even at a swit
hing rate of 50 letters per segment, but ofpoorer quality. 9



5 Protein Sequen
es Classi�
ationIn this se
tion we demonstrate the results of appli
ation of our algorithm to sev-eral protein families. The di�erent training sets were 
onstru
ted using the Pfam[BBD+00, release 5.4℄ and Swissprot [BA00, release 38℄ databases. Various sequen
edomain families were 
olle
ted from Pfam. In ea
h Pfam family all members sharea domain. An HMM dete
tor is built for that domain based on an MSA of a seedsubset of the family domain regions. The HMM is then veri�ed to dete
t that do-main in the remaining family members. Multi-domain proteins therefore belong toas many Pfam families as there are di�erent 
hara
terized domains within them. Inorder to build realisti
, more heterogeneous sets, we 
olle
ted from Swissprot the
omplete sequen
es of all 
hosen Pfam families. Ea
h set now 
ontains a 
ertaindomain in all its members, and possibly various other domains appearing anywherewithin some members.There were two types of PST models we got in the pro
ess of 
lustering of theprotein data: models that signi�
antly outperform others on relatively short re-gions - these we 
all dete
tors; and models that perform averagely over all sequen
eregions - these are \protein noise" models. In what is following we analyse whatkind of protein segments were sele
ted by the dete
tors on three exemplary fami-lies. In general the \highlighted" segments may be 
hara
terized as \segments withhighly 
onserved statisti
s (sequen
e), 
ommon to at least small amount of the inputproteins". Being su
h, the dete
ted segments may be seen as signatures (or �nger-prints) of the domains, though in the 
ases of very 
onserved domains the 
ompletedomain may be 
overed by dete
tor(s). The 
onservation usually indi
ates the keyimportan
e of the dete
ted segment for the fun
tioning of the whole domain. Theamount (or per
entage) of proteins sharing a similar segment among all the inputproteins may be miserable and the similarity will still be found (in one example wehave a domain that is 
ommon to only 12 out of 396 input proteins, and it still wasaltered). This is a 
lear and strong advantage of our approa
h 
ompared to MSA,as will be demonstrated here.In all the following examples we made several independent runs on ea
h 
ho-sen family. For ea
h family the di�erent runs 
onverged to the same �nal (stable)segmentation. In the presented graphs we show the segmentation of single repre-sentative protein sequen
es out of the explored families. The Swissprot a

essionnumber of the representative sequen
es shown will be written at the top of ea
hgraph.The Pax FamilyPax proteins (reviewed in [SKG94℄) are eukaryoti
 trans
riptional regulators thatplay 
riti
al roles in mammalian development and in on
ogenesis. All of them
ontain a 
onserved domain of 128 amino a
ids 
alled the paired or paired boxdomain (named after the drosophila paired gene whi
h is a member of the family).Some 
ontain an additional homeobox domain that su

eeds the paired domain.Pfam nomen
lature names the paired domain \PAX".The Pax proteins show a high degree of sequen
e 
onservation. One hundred andsixteen family members were used as a training set for the segmentation algorithm.In Fig. 9 we superimpose the predi
tion of all resulting PST dete
tors over onerepresentative family member. This Pax6 SS protein 
ontains both the paired andhomeobox domains. Both have mat
hing signatures. This also serves as an examplewhere the signatures exa
tly overlap the domains. The graph of family members not10
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Figure 9: Paired/PAX + homeoboxsignatures. The graph shows the segmen-tation of PAX6 SS protein we got. At thebottom we denote in Pfam nomen
laturethe lo
ation of the two experimentally ver-i�ed domains. These are in near perfe
tmat
h here with the high s
oring sequen
esegments.
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onserva-tion. We plot the 
lustal X 
onservations
ore of the PAX6 SS protein against anMSA of all Pax proteins. While the pre-dominant paired/PAX domain is dis
erned,the homeobox domain (appearing in abouthalf the sequen
es) is lost in the ba
kgroundnoise.having the homeobox domain 
ontains only the paired domain signature. Note thatonly about half of the proteins 
ontain the homeobox domain and yet its signatureis very 
lear.DNA Topoisomerase IIType II DNA topoisomerases are essential and highly 
onserved in all living organ-isms (see [Ro
95℄ for a review). They 
atalyze the inter
onversion of topologi
alisomers of DNA and are involved in a number of me
hanisms, su
h as super
oil-ing and relaxation, knotting and unknotting, and 
atenation and de
atenation. Inprokaryotes the enzyme is represented by the Es
heri
hia 
oli gyrase, whi
h is en-
oded by two genes, gyrase A and gyrase B. The enzyme is a tetramer 
omposedof two gyrA and two gyrB polypeptide 
hains. In eukaryotes the enzyme a
ts as adimer, where in ea
h monomer two distin
t domains are observed. The N-terminaldomain is similar in sequen
e to gyrase B and the C-terminal domain is similar insequen
e to gyraseA (Fig. 11.a). In Pfam 5.4 terminology gyrB and the N-terminaldomain belong in the \DNA topoisoII" family7, while gyrA and the C-terminal do-main belong in the \DNA topoisoIV" family8. Here we term the pairs gyrB/topoIIand gyrA/topoIV.For the analysis we used a group of 164 sequen
es that in
luded both eukary-oti
 topoisomerase II sequen
es and ba
terial gyrase A and B sequen
es (gatheredfrom the union of the DNA topoisoII and DNA topoisoIV Pfam 5.4 families). Wesu

essfully di�erentiate them into sub-
lasses. Fig. 11.d des
ribes a representa-tive of the eukaryoti
 topoisomerase II sequen
es and shows the signatures for bothdomains, gyrB/topoII and gyrA/topoIV. Fig. 11.b and Fig. 11.
 demonstrate theresults for representatives of the ba
terial gyrase B and gyrase A proteins, respe
-tively. The same two signatures are found in all three sequen
es, at the appropriate7Apparently this family has been sub-divided in Pfam 6 releases.8The name should not be 
onfused with the spe
ial type of topoisomerase II found in ba
teria,that is also termed topoisomerase IV, and plays a role in 
hromosome segregation.11
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(d) Yeast topoisomerase IIFigure 11: DNA topoisomerase II. (a) - Fusion event illustration, adapted from[MPN+99℄. The Pfam domain names are added in bra
kets, together with a referen
eto our results on a representative homolog. Compare the PST signatures in �gures (b)-(d)with the s
hemati
 drawing in (a). It is 
lear that the eukaryoti
 signature is indeed 
om-posed of the two prokaryoti
 ones, in the 
orre
t order, omitting the C-terminus signatureof gyrase B (short termed here as \Gyr").lo
ations. Interestingly, in Fig. 11.b in addition to the signature of the gyrB/topoIIdomain another signature appears at the C-terminal region of the sequen
e. Thissignature is 
ompatible with a known 
onserved region at the C-terminus of gyraseB,9 that is involved in the intera
tion with the gyrase A mole
ule.The relationship between the E. 
oli proteins gyrA and gyrB and the yeasttopoisomerase II (Fig. 11.a) provides a prototypi
al example of a fusion event oftwo proteins that form a 
omplex in one organism into one protein that 
arries asimilar fun
tion in another organism. Su
h examples have lead to the idea thatidenti�
ation of those similarities may suggest the relationship between the �rsttwo proteins, either by physi
al intera
tion or by their involvement in a 
ommonpathway. The 
omputational s
heme we present 
an be useful in sear
h for theserelationships.9Corresponding to the Pfam \DNA gyraseB C" family.12



The Glutathione S-Transferases (GST)The glutathione S-transferases (GST) represent a major group of detoxi�
ationenzymes (reviewed in [HP95℄). There is eviden
e that the level of expression ofGST is a 
ru
ial fa
tor in determining the sensitivity of 
ells to a broad spe
trum oftoxi
 
hemi
als. All eukaryoti
 spe
ies possess multiple 
ytosoli
 GST isoenzymes,ea
h of whi
h displays distin
t binding properties. A large number of 
ytosoli
 GSTisoenzymes have been puri�ed from rat and human organs. On the basis of theirsequen
es they have been 
lustered into �ve separate 
lasses designated 
lass alpha,mu, pi, sigma, and theta GST. The hypothesis that these 
lasses represent separatefamilies of GST is supported by the distin
t stru
ture of their genes and their
hromosomal lo
ation. The 
lass terminology is deliberately global, attempting toin
lude as many GSTs as possible. However, it is possible that there are sub-
lassesthat are spe
i�
 to a given organism or a group of organisms. In those sub-
lassesthe proteins may share more than 90% sequen
e identity, but these relationshipsare masked by their in
lusion in the more global 
lass. The 
lassi�
ation of a GSTprotein with weak similarity to one of these 
lasses is sometimes a diÆ
ult task.In parti
ular, the de�nition of the sigma and theta 
lasses is impre
ise. Indeed inthe PRINTS [ACF+00℄ database only the three 
lasses, alpha, pi, and mu havebeen de�ned by distin
t sequen
e signatures, while in Pfam all GSTs are 
lusteredtogether, for la
k of sequen
e dissimilarity.Three hundred and ninety six Pfam family members were segmented jointlyby our algorithm, and the results were 
ompared to those of PRINTS (as Pfam
lassi�es all as GSTs). Five distin
t signatures were found (not shown due to spa
elimitations): (1) A typi
al weak signature 
ommon to many GST proteins that
ontain no sub-
lass annotation. (2) A sharp peak after the end of the GST domainappearing exa
tly in all 12 out of 396 (3%) proteins where the elongation fa
tor 1gamma (EF1G) domain su

eeds the GST domain. (3) A 
lear signature 
ommonto almost all PRINTS annotated alpha and most pi GSTs. The last two signaturesrequire more knowledge of the GST superfamily. (4) The theta and sigma 
lassesare abundant in nonvertebrates. As more and more of these proteins are identi�ed itis expe
ted that additional 
lasses will be de�ned. The �rst eviden
e for a separatesigma 
lass was obtained by sequen
e alignments of S-
rystallins from mollus
 lens.Although these refra
tory proteins in the lens probably do not have a 
atalyti
a
tivity they show a degree of sequen
e similarity to the GSTs that justi�es theirin
lusion in this family and their 
lassi�
ation as a separate 
lass of sigma [BE92℄.This 
lass, de�ned in PRINTS as S-
rystallin, was almost entirely identi�ed by thefourth distin
t signature. (5) Interestingly, the last distin
t signature, is 
omposedof two dete
tor models, one from ea
h of the previous two signatures (alpha + piand S-
rystallin). Most of these two dozens proteins 
ome from inse
ts, and of thesemost are annotated to belong to the theta 
lass. Note that many of the GSTs ininse
ts are known to be only very distantly related to the �ve mammalian 
lasses.This putative theta sub-
lass, the previous signatures and the undete
ted PRINTSmu sub 
lass are all 
urrently further investigated.Comparative resultsIn order to evaluate our �ndings we have performed three unsupervised alignmentdriven experiments using the same sets des
ribed above: an MSA was 
omputed forea
h set using 
lustal X [JTG+98, Linux version 1.81℄. We let 
lustal X 
ompare thelevel of 
onservation between individual sequen
es and the 
omputed MSA pro�lein ea
h set. Qualitatively these graphs resemble ours, apart from the fa
t that they13



do not o�er separation into distin
t models.We brie
y re
ount some results: the Pax alignment did not 
learly elu
idate thehomeobox domain existing in about half the sequen
es (see Fig. 10). For type IItopoisomerases the Gyrase B C-terminus unit from Fig. 11.b 
an be dis
erned fromthe main unit, but with a mu
h lower peak. And the 
lear sum of two signatures weobtained for the eukaryoti
 sequen
es (Fig. 11.d) is lost. In the last and hardest 
asethe MSA approa
h tells us nothing. All GST domain graphs look nearly identi
alpre
luding any possible subdivision. And the 12 (out of 396) instan
es of the EF1Gdomain are 
ompletely lost at the alignment phase.6 Dis
ussionThe sequen
e segmentation algorithm we des
ribe and evaluate in this paper is a
ombination of several di�erent information theoreti
 ideas and prin
iples, naturally
ombined into one new 
oherent pro
edure. The 
ore algorithm, the 
onstru
tion ofPST, is essentially a sour
e 
oding loss-less 
ompression method. It approximatesa 
omplex sto
hasti
 sequen
e by a Markov model with variable memory length.The power of this pro
edure, as demonstrated on both natural texts and on proteinsequen
es [RST96, BY01℄, is in its ability to 
apture short strings (suÆxes) that aresigni�
ant predi
tors - thus good features - for the statisti
al sour
e. We 
ombinethe PST 
onstru
tion with another information theoreti
 idea - the MDL prin
iple- and obtain a more eÆ
ient estimation of the PST, 
ompared with its originallearning algorithm.Our se
ond key idea is to embed the PST 
onstru
tion in a lossy 
ompressionframework by adopting the rate-distortion theory into a 
ompetitive learning pro-
edure. Here we treat the PST as a model of a single statisti
al sour
e and use therate distortion framework (the BA algorithm) to partition the sequen
es betweenseveral su
h models in an optimal way. Here we spe
i�
ally obtain a more expressivestatisti
al model, as mixtures of (short memory, ergodi
) Markov models lay out-side of this 
lass, and 
an be 
aptured only by mu
h deeper Markov models. Thisis a 
lear advantage of our 
urrent approa
h over mixtures of HMMs (as done in[FST98℄) sin
e mixtures of HMMs are just HMMs with 
onstrained state topology.The analogy with rate-distortion theory enables us to take advantage of thetrade-o� between 
ompression (rate) and distortion, and use the Lagrange multiplier�, required to implement this trade-o�, as a resolution parameter. The deterministi
annealing framework follows naturally in this formulation and provides us with asimple way to obtain hierar
hi
al segmentation of very 
omplex sequen
es. As longas the underlying statisti
al sour
es are distin
t enough, 
ompared to the averagealternation rate between them, our segmentation s
heme should perform well.Our experiments with protein families demonstrated a number of 
lear advan-tages of the proposed algorithm: it is fully automated; it does not require or attemptan MSA of the input sequen
es; it handles heterogeneous groups well and lo
atesdomains appearing only few times in the data; by nature it is not 
onfused by dif-ferent module orderings within the input sequen
es; it appears to seldom generatefalse positives; and it is shown to surpass HMM 
lustering in at least one hard in-stan
e. Together with the tremendous su

ess on the multilingual text data we geta strong eviden
e that our algorithm is a new powerful tool for sequen
e analysisthat worth further development and examination on additional types of data.
14
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