
Unsupervised Segmentation and Classi�ation ofMixtures of Markovian SouresYevgeny Seldin Gill Bejerano � Naftali TishbyShool of Computer Siene and EngineeringHebrew University, Jerusalem 91904, IsraelE-mail: fseldin, jill, tishbyg�s.huji.a.ilAbstratWe desribe a novel algorithm for unsupervised segmentation of sequenesinto alternating Variable Memory Markov soures, �rst presented in [SBT01℄.The algorithm is based on ompetitive learning between Markov models, whenimplemented as Predition SuÆx Trees [RST96℄ using the MDL priniple. Byapplying a model lustering proedure, based on rate distortion theory om-bined with deterministi annealing, we obtain a hierarhial segmentation ofsequenes between alternating Markov soures. The method is applied su-essfully to unsupervised segmentation of multilingual texts into languageswhere it is able to infer orretly both the number of languages and the lan-guage swithing points. When applied to protein sequene families (resultsof the [BSMT01℄ work), we demonstrate the method's ability to identify bi-ologially meaningful sub-sequenes within the proteins, whih orrespond tosignatures of important funtional sub-units alled domains. Our approahto proteins lassi�ation (through the obtained signatures) is shown to haveboth oneptual and pratial advantages over the urrently used methods.1 IntrodutionUnsupervised segmentation of sequenes has beome a fundamental problem withmany important appliations suh as analysis of texts, handwriting and speeh, neu-ral spike trains and bio-moleular sequenes. The most ommon statistial approahto this problem, using hidden Markov models (HMM), was originally developed forthe analysis of speeh signals, but beame the method of hoie for statistial seg-mentation of most natural sequenes. HMMs are prede�ned parametri models -their arhiteture and topology are predetermined and the memory is limited to�rst order in most ommon appliations. The suess of HMMs thus ruially de-pends on the orret hoie of the state model. It is rather diÆult to generalizethese models to hierarhial strutures with unknown a-priory state-topology (see[FST98℄ for an attempt).An interesting alternative to the HMM was proposed in [RST96℄ in the form ofa sub lass of probabilisti �nite automata, the variable memory Markov (VMM)soures. These models have several important advantages over the HMMs: (i) theyapture longer orrelations and higher order statistis of the sequene; (ii) they�Supported by a grant from the Ministry of Siene, Israel1



an be learned in a provably optimal PAC like sense using a onstrution alledpredition suÆx tree (PST) [RST96℄; (iii) they an be learned eÆiently by lineartime algorithm [AB00℄; and (iv) their topology and omplexity are determined bythe data.In the �rst half of the paper we review a powerful extension of the VMM modeland the PST algorithm to a stohasti mixture of suh models, suggested in [SBT01℄.The algorithm learns the models in a hierarhial ompetitive way using a determin-isti annealing (DA) [Ros98℄ approah. The problem is generally omputationallyhard, similarly to data lustering. Only very simple sequenes an be orretly seg-mented eÆiently in general [FR95℄. Our model an in fat be viewed as an HMMwith a VMM attahed to eah state, but the learning algorithm allows a ompletelyadaptive struture and topology both for eah state and for the whole model. Theapproah we take is information theoreti in nature. The goal is to enable shortdesription of the data by a (soft) mixture of VMM models, eah one ontrolled byan MDL priniple (see [BRY98℄ for a review). This we do by modifying the originalPST algorithm using the MDL formulation, while preserving its good learnabilityproperties. The mixture model is then learned via a generalized rate distortiontheory (see [CT91, Ch. 13℄) approah. Here we take the log-likelihood of the databy eah model as an e�etive distortion measure between the sequene and its rep-resentative model and apply the Blahut-Arimoto (BA) algorithm (see [CT91℄) tooptimally partition the sequene(s) between the VMM model entroids. Just like inmany lustering algorithms we then update the models based on this optimal par-tition of the sequene(s). In this way a natural resolution parameter is introduedthrough the onstraint on the expeted tolerated distortion. This \temperature"like Lagrange multiplier is further used in the deterministi annealing loop to on-trol the resolution of the model. The hierarhial struture is obtained by allowingthe models to split (the re�nement step) after onvergene of the iterations betweenthe BA algorithm and the VMM entroids update. The algorithm exhibits severalinteresting features that will be only mentioned here due to spae limitations. Theirdisussion is left to [Sel01℄.In the seond part of the paper we ite the results of an interesting appliationof the algorithm to the problem of protein sequenes lassi�ation, mainly takenfrom the [BSMT01℄ work. The funtion of a protein is determined by its sequene.Numerous proteins exhibit a modular arhiteture, onsisting of several sequenedomains that often arry spei� biologial funtions (reviewed in [BK96℄). For pro-teins whose struture has been solved, it an be shown that in many ases the har-aterized sequene domains are assoiated with autonomous strutural domains. Inproteins of various organisms we �nd domains that are responsible for similar bio-hemial funtionality. The sequenes of those domains are usually resembling, butnot idential. Charaterization of a protein family by its distint sequene domainseither diretly or through the use of domain 'motifs', or 'signatures' (short sub-segments of the domain that are typial for most members of that family) is ruialfor funtional annotation and orret lassi�ation of newly disovered proteins.Many methods have been proposed for lassi�ation of proteins based on theirsequene harateristis. Most of them are based on a seed multiple sequene align-ment (MSA) of proteins that are known to be related (see [DEKM98℄). Theystrongly rely on the initial seletion of the related protein segments for the MSA,usually hand rafted by experts, and on the quality of the MSA itself. Besides be-ing in general omputationally intratable, when remote sequenes are inluded ina group of related proteins, establishment of a good MSA eases to be an easy taskand delineation of the domain boundaries proves even harder. This beomes nearly2



impossible for heterogeneous groups where the shared motifs are not neessarilyabundant or do not ome in the same order.In the earlier work of [BY01℄ PSTs were shown to be a powerful tool for su-pervised lassi�ation of proteins. This work extends our abilities by allowing toperform this task in unsupervised manner. The advantage of our algorithm is thatit does not attempt any alignment, but rather lusters together regions with sim-ilar statistis. The regions need not ome in the same order, nor they need tobe idential. In addition there is no need in prior seletion of groups of relatedproteins, the algorithm �nds them even in a bunh of unrelated stu�, as we willshow here. This is even more attrating sine the algorithm may �nd some newstruture or orrelations in the data we possibly have not thought about. Thus ourapproah opens a new promising way to protein sequene analysis, lassi�ationand funtional annotation.The paper is built in the following way. In Se. 2 and Se. 3 we desribe thealgorithm from [SBT01℄. In Se. 4 we apply the algorithm to the problem of seg-mentation of a mixture of interhanging texts in 5 di�erent European languages.Here the model identi�ed both the orret number of languages and the segmenta-tion of the text between the languages with resolution of a few letters. In Se. 5 weshow the results of [BSMT01℄ work, where we apply the algorithm to the problemof protein sequenes lassi�ation. Here the algorithm was able to re�ne the HMMsuperfamily lassi�ation and identify domains that appeared in a very small per-ent of the input proteins (in one ase only 12 proteins out of 396 input sequenes).Se. 6 holds a disussion of the algorithm and the ahieved results.2 Single Soure ModelingIn this setion we will de�ne VMM proesses, review an eÆient data struture fortheir representation from [RST96℄ and a non-parametri learning algorithm from[SBT01℄ that is later used as a ore for the segmentation proess.2.1 Variable Memory Markov ProessesGiven a string �x, over a �nite alphabet �, that was sequentially generated by somestatistial soure G, the probability that G has generated that partiular sequenean always be written as: PG(�x) = PG(x1::xn) = Qni=1 PG(xijx1::xi�1). In thissetion we assume G to be stationary and ergodi [CT91℄. We de�ne a ontext ofxi to be any substring xi�m::xi�1 for m � 0. If m = 0 we say that the ontext ofxi is the empty string, denoted by �. Further we de�ne C to be any �nite subsetof strings in �� that inludes �. We say that xi�m::xi�1, or �, is the C-ontext ofxi if it is the longest suÆx of x1::xi�1 in C. Proess G respets ontext set C ifPG(xijx1::xi�1) = PG(xijC-ontext(xi)) for all i. The length of C-ontext(xi) isthe memory of proess G at plae i, and it may vary with i.2.2 Predition SuÆx Trees (PSTs)A ontext set C may be eÆiently represented using a tree. By assoiating adistribution vetor over � with eah node of the tree we get a PST1 (see Fig. 1).Formally, a PST T is a j�j-ary tree that satis�es:1. For eah node eah outgoing edge is labeled by a single symbol � 2 �, while1A Predition SuÆx Tree is related to, but di�ers from a lassial suÆx tree (see [AB00℄).3
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(.05,.25,.4,.25,.05)(.1,.1,.35,.35,.1)Figure 1: An example of a PSTover the alphabet � = fa; b; k; l; rg.The vetor near eah node is theprobability distribution for the nextsymbol. E.g., the probability toobserve k after the substring bara,whose largest suÆx in the tree is ra,is P (kjbara) = Pra(k) = 0:4.
Learn PST(String �x, Weights �w)1. T = Build PST(�x, �w)2. Prune(T , �)The two steps:I. Build PST (String �x, Weights �w)1. Start with T having a single node �.2. Reursively for eah s 2 T and � 2 �If Size(�s) < H(Ps) � w(�s) ThenAdd node �s to T .II. Prune (Tree T , node s)Reursively for eah � 2 � suh that �s 2 T :1. Prune(�s)2. If TotalSize(T�s) > H(Ps) �w(�s) ThenDelete subtree T�sFigure 2: PST learning algorithm.there is at most one edge labeled by eah symbol.2. Eah node of the tree is labeled by a unique string s (a ontext) that orrespondsto a 'walk' starting from that node and ending in the root of the tree. We identifynodes with their labels and label the root node by the empty string �.3. A probability distribution vetor Ps(�) is assoiated with eah node s. Ps(�)is the probability that a symbol � will ome after the ontext s.We de�ne sufT (x1::xi) as the longest sequene xi�m::xi that makes a path inT when we start from the root and traverse the edge labeled by xi, from there wetraverse the edge labeled by xi�1 et., until there is no appropriate edge to ontinuewith or we have traversed the whole string2. If there is no edge labeled by xi at theroot we say that sufT (x1::xi) = �. The olletion of all node labels in T make upour set of memorized ontexts.2.3 Prediting and Generating using PSTsHere we de�ne the probability measure that a PST T indues on the spae of allstrings �x 2 �n, for any given n. Given a string �x 2 �n and a PST T the probabilitythat �x was generated by T is:PT (�x) = nYi=1PT (xijx1::xi�1) = nYi=1PsufT (x1::xi�1)(xi)When T is used as a generator, it generates a symbol xi aording to the distributionPsufT (x1::xi�1).2.4 Learning PSTsWe now turn to desribe the MDL driven algorithm for PST learning, presentedin [SBT01℄. The algorithm is non-parametri and exhibits self-regularization. It is2Note that we do not neessarily stop at a leaf.4



generalized to handle weighted data, whih will appear later on.The inputs to the algorithm are a string �x = x1::xn and a vetor of weights�w = w1::wn, where eah wi is a weight assoiated with xi (0 � wi � 1)3. We willdenote w(xi) � wi. You may think of w(xi) as a measure of on�dene we give tothe observation xi. For now you may assume all wi = 1.For a string s we say that sxi 2 �x if it is a substring of �x ending at plae i. Wede�ne: ws(�) � Xxi=� and sxi2�xw(xi)and w(s) �P�2� ws(�). Clearly ws(�)w(s) is an empirial estimate for Ps(�).The idea behind MDL is to minimize the total length (in bits) of model de-sription together with the ode length of the data when it is enoded using themodel. When oding a single node s we should enumerate its sons and enode thedistribution vetor Ps. The �rst takes j�j bits - bit � denotes the presene of son �.For the seond it is suÆient to ode all the ounts ws(�). Sine the total amountof data \passing through" node s4 is w(s) the ounts should be oded to withinauray pw(s). Thus the desription size of s is:Size(s) = j�j+ j�j2 � log2(w(s))Denoting by Ts the subtree of T rooted at node s:Size(Ts) = Size(s) + X�s2T Size(T�s)(s 2 T means that s is a node in T ). The minimal average ode length per sym-bol, for all symbols oded using node s, is given by the entropy of Ps, H(Ps) ��P�2� Ps(�) � log2(Ps(�)). The equivalent quantity for a subtree Ts is thus aweighted sum given by:H(Ts) = X�s2T w(�s)w(s) �H(T�s) + X�s=2T w(�s)w(s) �H(Ps)Summing this altogether we get:TotalSize(Ts) = Size(Ts) + w(s) �H(Ts)Our goal is to minimize TotalSize(�) whih is the total desription length of thewhole tree together with all oded data (as all data passes through the root node�). The algorithm works in two steps. In step I we extend all the nodes that arepotentially bene�ial, i.e. by using them wemay derease the total size. Clearly onlythose nodes whose desription size is smaller than the ode length of data passingthrough them when that data is oded using the parent node distribution are ofinterest. In step II the tree is reursively pruned so that only truly bene�ial nodesremain. If a hild subtree T�s of some node s gives better ompression (respeting itsown desription length) than that of its parent node, that subtree is left, otherwiseit is pruned. The algorithm is given in Fig. 23Generalization to a set of multiple strings is straightforward and therefore omitted here forease of notation. See [RST96℄ for an example of suh generalization on the original algorithm.4suf(x1::xi�1) ends with s. 5



3 Sequene Segmentation AlgorithmIn this setion we desribe the unsupervised sequene segmentation algorithm, pre-sented in [SBT01℄. We suppose that a given string �x was generated by repeatedlyswithing between several di�erent PST models with some upper bound on the al-ternation rate. I.e., there are k PSTs and a partition of �x into ontinuous segments,suh that eah segment was generated by a single PST out of k. We assume thatthe segments are signi�antly long, so that if we have trained a PST for eah soureusing all of its segments, we ould say with high on�dene about eah segmentwhih model it belongs to. Our goal is to �nd k0 PST models and a segmentationof �x that will be as lose as possible to the original ones.This problem is similar to the problem of �nding the best number and parametersfor a Gaussian mixture model of points in Rn. Given a string �x and a vetor ofassignment probabilities we an build a PST model and estimate its parameters.Alternatively, a given model indues probabilities on all substrings of �x. Alternatingbetween these two estimations is the essene of the EM algorithm in any mixturemodel. This alternating estimation algorithm an be embedded in a deterministiannealing (DA) proedure to allow for inreasing resolution, or number of mixtureomponents. In our ase, however, we do not allow our PST models to swith atevery symbol, but rather require ontinuous segments. The fundamental reason forlimiting the model swithing frequeny is that too short segments do not enablereliable disrimination between di�erent models. DA helps us to avoid many loalminima and provides an elegant framework for hierarhial strutures (see [Ros98℄).Next we give some de�nitions and desribe the Blahut-Arimoto and our soft lus-tering algorithm. We then embed it in the DA framework to obtain the hierarhialsegmentation.3.1 De�nitionsLet T = fTjgkj=1 be the set of PSTs of size k we are urrently working with. Wede�ne wj(xi) � P (Tj jxi) to be the probability that xi is assigned to model Tj5.In order to estimate the quality of a given partition we de�ne a distane (loaldistortion) between a symbol xi and a model Tj to be minus log likelihood of Tj ona window of size 2M + 1 around xi:d(xi; Tj) = � i+MX�=i�M lnPTj (x�jx1::x��1) :The role of the window is to smooth the segmentation and to enable reliable estima-tion of the log-likelihood. The global distortion, i.e. the average distane betweensegments and the orresponding models, of an assignment is given by:hdi = 1n nXi=1 kXj=1 d(xi; Tj) � P (Tj jxi) :3.2 The Blahut-Arimoto AlgorithmFirst we want to �nd the optimal assignment probabilities P (Tj jxi) for a �xed setof PST models T , onstrained by the allowed distortion level D. Rate distortion5The vetor of weights �wj is later used to retrain Tj .6



Blahut-Arimoto(P (T�), �)Repeat until onvergene:1. 8i; j : P (Tj jxi) = P (Tj )e��d(xi;Tj )Pk�=1 P (T�)e��d(xi;T�)2. 8j : P (Tj) = 1nPni=1 P (Tj jxi)Figure 3: The BA algorithm
Soft Clustering(T , P (T�), �)Repeat until onvergene:1. Blahut-Arimoto(P (T�), �)2. 8j : Tj = Learn PST(�x, �wj)Figure 4: Soft Clusteringtheory [CT91, Ch. 13℄ provides us with the optimal assignment via:minfP (Tj jxi) : hdi�D;Pkj=1 P (Tj jxi)=1g I(�x; T ) (1)where I(�x; T ) = 1nPni=1Pkj=1 P (Tj jxi) � log P (Tj jxi)P (Tj ) is the mutual information be-tween �x and T , and P (Tj) = 1nPni=1 P (Tj jxi) is the proportion of data assigned tomodel j. In rate distortion theory (1) is alled the rate distortion funtion, R(D).By minimizing the mutual information we in fat enable minimal desriptionlength of the sequenes using the PST models, subjet to a given distortion on-straint. Sine our distortion, an expeted log-likelihood, is also the optimal odelength by the model, it is fully onsistent with the MDL framework. We thus tryto �nd a mixture of PSTs that enable short desription of the omplete observationsequene, under some ontinuity requirements from the resulting segmentation.We employ the alternating minimization proedure, known as the Blahut-Arimoto(BA) algorithm, whih is guaranteed to onverge to the optimal assignment (seeFig. 3). There the distortion onstraint D is imposed by the orresponding La-grange multiplier �.3.3 Soft ClusteringNow we go one step further by allowing to modify the PST models. This is anal-ogous to the entroid re-estimation in lustering. We want to obtain a good (lowdistortion) segmentation of �x for a given value of � (the assignment probabilitiesare given by 1: in the BA algorithm).We approah this problem using a soft lustering proedure. Given an initial setof k PSTs T , we partition the sequene using the BA algorithm and then retrainall k PSTs, using the assignment probabilities P (Tj jxi) obtained from the BA asweight vetors �wj for the Learn PST proedure. These two steps are repeated untilonvergene (see Fig. 4). Here the Lagrange multiplier � plays the role of resolutionparameter and prevents from falling into loal minima.At every given distortion level D a limited number of PSTs K is suÆientto ahieve D. When k > K some of the PSTs ollapse into a single model - aphenomenon learly desribed in [Ros98℄ - or remain without data (P (Tj) = 0).The latter is aused by the requirement of having ontinuous segments in the �nalsegmentation. Beause of this requirement the ompetition between the models\pushes out" the models who do not \aquire" enough data in favor of those havingmore data. In this manner the algorithm \self regulates" its global omplexity.7



The segmentation algorithm:1. For all i, w0(xi) = 1; T0 = Learn PST(�x, �w0) // InitializationT = fT0g, P (T0) = 1, � = �0, kprev = 02. While jT j < n2M+1 // Annealing loop(a) While jT j > kprev // If jT j not inreased, inrease �i. kprev = jT jii. Split PSTs(T , P (T�))iii. Soft Clustering(T , P (T�), �)iv. Remove all Tj suh that P (Tj) = 0 from T .(b) Inrease �Figure 5: Unsupervised Sequene Segmentation Algorithm.As appeared in pratial appliations, the algorithm ahieves better results whenthe BA loop is limited to a single pass. This gives the algorithm a possibility toorret the urrent set of PSTs T while looking for the optimal segmentation of �x(see [Sel01℄).3.4 DA and the Segmentation AlgorithmThe landsape of the problem de�ned in this setion is typially riddled with loalminima and it is omputationally diÆult to obtain the optimal solution. Usually asuessful way of �nding a good solution is through DA: a series of solutions to thesoft lustering problem is found, starting from a low value of resolution parameter� and gradually inreasing it, while allowing models to split in two when neessary.The splitting proedure is straightforward: for eah PST T in T we reate twoopies of T and perform random antisymmetri perturbations of the ount vetorsin eah node of the two opies. Then we replae T with the two obtained PSTswhile distributing P (T ) equally among them.Now we are �nally ready to outline the omplete algorithm (see Fig. 5). We startwith T inluding a single \average" PST T0 that is trained on the whole sequene �xwith w0(xi) = 1 for all i. We pik an initial value of �, split T and proeed with thesoft lustering proedure when initialized with the two models we got after split.We then split T again and repeat. If a model is found to have lost all its data itis eliminated. When the number of survived models stops inreasing we inrease �and then repeat the whole proess. � is inreased at most till the limit when thelusters beome one window size.Sets of segments that are assigned with high probability to the same model overa long range of � are stable lusters that ontain important information about thestatistial struture of our sample.4 Multilingual Text SegmentationIn our �rst example we onstrut a syntheti text omposed of alternating fragmentsof �ve other texts in �ve di�erent languages: English, German, Italian, Frenh and8
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shown for all models as a funtion of the it-erations of our innermost loop. Bifurationsare the splitting events and urves droppingo� to zero are models dying out. Inrementsin � our after the number of models on-verges at a given temperature. Languagesaptured by eah model after the soft lus-tering onvergene are pointed out. Notiehow the order in whih the languages sepa-rate from the primary joint model matheslanguage relatedness. Unlike in a similargraph in [SBT01℄, here we limit the BA loopto single pass. The /-like urves after bifur-ations (unlike <-like in [SBT01℄) indiate amore thorough searh over possible T -s.Russian, using standard transripts to onvert all into lower ase Latin letters withblank substituting all separators. The length of eah fragment taken is 100 letters,whih means that we are swithing languages every two sentenes or so. The totallength of the text is 150000 letters (30000 from eah language).We made several independent runs of our algorithm. In every run, after 2000-3000 aumulated innermost (BA) iterations we got a lear-ut, orret segmenta-tion of the text into segments orresponding to the di�erent languages, aurate upto a few letters (See Fig. 6, 7 for a typial example)6. Moreover, in all runs furthersplitting of all 5 language models resulted in starvation and subsequent removal of 5extra models, taking us bak to the same segmentation as before. Also, in most runslinguistially similar languages (English and German, Frenh and Italian) separatedat later stages of the segmentation proess (Fig. 8 gives an example), suggesting ahierarhial struture over the disovered data soures.6Corret segmentation was ahieved even at a swithing rate of 50 letters per segment, but ofpoorer quality. 9



5 Protein Sequenes Classi�ationIn this setion we demonstrate the results of appliation of our algorithm to sev-eral protein families. The di�erent training sets were onstruted using the Pfam[BBD+00, release 5.4℄ and Swissprot [BA00, release 38℄ databases. Various sequenedomain families were olleted from Pfam. In eah Pfam family all members sharea domain. An HMM detetor is built for that domain based on an MSA of a seedsubset of the family domain regions. The HMM is then veri�ed to detet that do-main in the remaining family members. Multi-domain proteins therefore belong toas many Pfam families as there are di�erent haraterized domains within them. Inorder to build realisti, more heterogeneous sets, we olleted from Swissprot theomplete sequenes of all hosen Pfam families. Eah set now ontains a ertaindomain in all its members, and possibly various other domains appearing anywherewithin some members.There were two types of PST models we got in the proess of lustering of theprotein data: models that signi�antly outperform others on relatively short re-gions - these we all detetors; and models that perform averagely over all sequeneregions - these are \protein noise" models. In what is following we analyse whatkind of protein segments were seleted by the detetors on three exemplary fami-lies. In general the \highlighted" segments may be haraterized as \segments withhighly onserved statistis (sequene), ommon to at least small amount of the inputproteins". Being suh, the deteted segments may be seen as signatures (or �nger-prints) of the domains, though in the ases of very onserved domains the ompletedomain may be overed by detetor(s). The onservation usually indiates the keyimportane of the deteted segment for the funtioning of the whole domain. Theamount (or perentage) of proteins sharing a similar segment among all the inputproteins may be miserable and the similarity will still be found (in one example wehave a domain that is ommon to only 12 out of 396 input proteins, and it still wasaltered). This is a lear and strong advantage of our approah ompared to MSA,as will be demonstrated here.In all the following examples we made several independent runs on eah ho-sen family. For eah family the di�erent runs onverged to the same �nal (stable)segmentation. In the presented graphs we show the segmentation of single repre-sentative protein sequenes out of the explored families. The Swissprot aessionnumber of the representative sequenes shown will be written at the top of eahgraph.The Pax FamilyPax proteins (reviewed in [SKG94℄) are eukaryoti transriptional regulators thatplay ritial roles in mammalian development and in onogenesis. All of themontain a onserved domain of 128 amino aids alled the paired or paired boxdomain (named after the drosophila paired gene whih is a member of the family).Some ontain an additional homeobox domain that sueeds the paired domain.Pfam nomenlature names the paired domain \PAX".The Pax proteins show a high degree of sequene onservation. One hundred andsixteen family members were used as a training set for the segmentation algorithm.In Fig. 9 we superimpose the predition of all resulting PST detetors over onerepresentative family member. This Pax6 SS protein ontains both the paired andhomeobox domains. Both have mathing signatures. This also serves as an examplewhere the signatures exatly overlap the domains. The graph of family members not10
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Figure 9: Paired/PAX + homeoboxsignatures. The graph shows the segmen-tation of PAX6 SS protein we got. At thebottom we denote in Pfam nomenlaturethe loation of the two experimentally ver-i�ed domains. These are in near perfetmath here with the high soring sequenesegments.
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PAX homeoboxFigure 10: Pax MSA pro�le onserva-tion. We plot the lustal X onservationsore of the PAX6 SS protein against anMSA of all Pax proteins. While the pre-dominant paired/PAX domain is diserned,the homeobox domain (appearing in abouthalf the sequenes) is lost in the bakgroundnoise.having the homeobox domain ontains only the paired domain signature. Note thatonly about half of the proteins ontain the homeobox domain and yet its signatureis very lear.DNA Topoisomerase IIType II DNA topoisomerases are essential and highly onserved in all living organ-isms (see [Ro95℄ for a review). They atalyze the interonversion of topologialisomers of DNA and are involved in a number of mehanisms, suh as superoil-ing and relaxation, knotting and unknotting, and atenation and deatenation. Inprokaryotes the enzyme is represented by the Esherihia oli gyrase, whih is en-oded by two genes, gyrase A and gyrase B. The enzyme is a tetramer omposedof two gyrA and two gyrB polypeptide hains. In eukaryotes the enzyme ats as adimer, where in eah monomer two distint domains are observed. The N-terminaldomain is similar in sequene to gyrase B and the C-terminal domain is similar insequene to gyraseA (Fig. 11.a). In Pfam 5.4 terminology gyrB and the N-terminaldomain belong in the \DNA topoisoII" family7, while gyrA and the C-terminal do-main belong in the \DNA topoisoIV" family8. Here we term the pairs gyrB/topoIIand gyrA/topoIV.For the analysis we used a group of 164 sequenes that inluded both eukary-oti topoisomerase II sequenes and baterial gyrase A and B sequenes (gatheredfrom the union of the DNA topoisoII and DNA topoisoIV Pfam 5.4 families). Wesuessfully di�erentiate them into sub-lasses. Fig. 11.d desribes a representa-tive of the eukaryoti topoisomerase II sequenes and shows the signatures for bothdomains, gyrB/topoII and gyrA/topoIV. Fig. 11.b and Fig. 11. demonstrate theresults for representatives of the baterial gyrase B and gyrase A proteins, respe-tively. The same two signatures are found in all three sequenes, at the appropriate7Apparently this family has been sub-divided in Pfam 6 releases.8The name should not be onfused with the speial type of topoisomerase II found in bateria,that is also termed topoisomerase IV, and plays a role in hromosome segregation.11
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(b) E. oli gyrase B
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(d) Yeast topoisomerase IIFigure 11: DNA topoisomerase II. (a) - Fusion event illustration, adapted from[MPN+99℄. The Pfam domain names are added in brakets, together with a refereneto our results on a representative homolog. Compare the PST signatures in �gures (b)-(d)with the shemati drawing in (a). It is lear that the eukaryoti signature is indeed om-posed of the two prokaryoti ones, in the orret order, omitting the C-terminus signatureof gyrase B (short termed here as \Gyr").loations. Interestingly, in Fig. 11.b in addition to the signature of the gyrB/topoIIdomain another signature appears at the C-terminal region of the sequene. Thissignature is ompatible with a known onserved region at the C-terminus of gyraseB,9 that is involved in the interation with the gyrase A moleule.The relationship between the E. oli proteins gyrA and gyrB and the yeasttopoisomerase II (Fig. 11.a) provides a prototypial example of a fusion event oftwo proteins that form a omplex in one organism into one protein that arries asimilar funtion in another organism. Suh examples have lead to the idea thatidenti�ation of those similarities may suggest the relationship between the �rsttwo proteins, either by physial interation or by their involvement in a ommonpathway. The omputational sheme we present an be useful in searh for theserelationships.9Corresponding to the Pfam \DNA gyraseB C" family.12



The Glutathione S-Transferases (GST)The glutathione S-transferases (GST) represent a major group of detoxi�ationenzymes (reviewed in [HP95℄). There is evidene that the level of expression ofGST is a ruial fator in determining the sensitivity of ells to a broad spetrum oftoxi hemials. All eukaryoti speies possess multiple ytosoli GST isoenzymes,eah of whih displays distint binding properties. A large number of ytosoli GSTisoenzymes have been puri�ed from rat and human organs. On the basis of theirsequenes they have been lustered into �ve separate lasses designated lass alpha,mu, pi, sigma, and theta GST. The hypothesis that these lasses represent separatefamilies of GST is supported by the distint struture of their genes and theirhromosomal loation. The lass terminology is deliberately global, attempting toinlude as many GSTs as possible. However, it is possible that there are sub-lassesthat are spei� to a given organism or a group of organisms. In those sub-lassesthe proteins may share more than 90% sequene identity, but these relationshipsare masked by their inlusion in the more global lass. The lassi�ation of a GSTprotein with weak similarity to one of these lasses is sometimes a diÆult task.In partiular, the de�nition of the sigma and theta lasses is impreise. Indeed inthe PRINTS [ACF+00℄ database only the three lasses, alpha, pi, and mu havebeen de�ned by distint sequene signatures, while in Pfam all GSTs are lusteredtogether, for lak of sequene dissimilarity.Three hundred and ninety six Pfam family members were segmented jointlyby our algorithm, and the results were ompared to those of PRINTS (as Pfamlassi�es all as GSTs). Five distint signatures were found (not shown due to spaelimitations): (1) A typial weak signature ommon to many GST proteins thatontain no sub-lass annotation. (2) A sharp peak after the end of the GST domainappearing exatly in all 12 out of 396 (3%) proteins where the elongation fator 1gamma (EF1G) domain sueeds the GST domain. (3) A lear signature ommonto almost all PRINTS annotated alpha and most pi GSTs. The last two signaturesrequire more knowledge of the GST superfamily. (4) The theta and sigma lassesare abundant in nonvertebrates. As more and more of these proteins are identi�ed itis expeted that additional lasses will be de�ned. The �rst evidene for a separatesigma lass was obtained by sequene alignments of S-rystallins from mollus lens.Although these refratory proteins in the lens probably do not have a atalytiativity they show a degree of sequene similarity to the GSTs that justi�es theirinlusion in this family and their lassi�ation as a separate lass of sigma [BE92℄.This lass, de�ned in PRINTS as S-rystallin, was almost entirely identi�ed by thefourth distint signature. (5) Interestingly, the last distint signature, is omposedof two detetor models, one from eah of the previous two signatures (alpha + piand S-rystallin). Most of these two dozens proteins ome from insets, and of thesemost are annotated to belong to the theta lass. Note that many of the GSTs ininsets are known to be only very distantly related to the �ve mammalian lasses.This putative theta sub-lass, the previous signatures and the undeteted PRINTSmu sub lass are all urrently further investigated.Comparative resultsIn order to evaluate our �ndings we have performed three unsupervised alignmentdriven experiments using the same sets desribed above: an MSA was omputed foreah set using lustal X [JTG+98, Linux version 1.81℄. We let lustal X ompare thelevel of onservation between individual sequenes and the omputed MSA pro�lein eah set. Qualitatively these graphs resemble ours, apart from the fat that they13



do not o�er separation into distint models.We briey reount some results: the Pax alignment did not learly eluidate thehomeobox domain existing in about half the sequenes (see Fig. 10). For type IItopoisomerases the Gyrase B C-terminus unit from Fig. 11.b an be diserned fromthe main unit, but with a muh lower peak. And the lear sum of two signatures weobtained for the eukaryoti sequenes (Fig. 11.d) is lost. In the last and hardest asethe MSA approah tells us nothing. All GST domain graphs look nearly identialpreluding any possible subdivision. And the 12 (out of 396) instanes of the EF1Gdomain are ompletely lost at the alignment phase.6 DisussionThe sequene segmentation algorithm we desribe and evaluate in this paper is aombination of several di�erent information theoreti ideas and priniples, naturallyombined into one new oherent proedure. The ore algorithm, the onstrution ofPST, is essentially a soure oding loss-less ompression method. It approximatesa omplex stohasti sequene by a Markov model with variable memory length.The power of this proedure, as demonstrated on both natural texts and on proteinsequenes [RST96, BY01℄, is in its ability to apture short strings (suÆxes) that aresigni�ant preditors - thus good features - for the statistial soure. We ombinethe PST onstrution with another information theoreti idea - the MDL priniple- and obtain a more eÆient estimation of the PST, ompared with its originallearning algorithm.Our seond key idea is to embed the PST onstrution in a lossy ompressionframework by adopting the rate-distortion theory into a ompetitive learning pro-edure. Here we treat the PST as a model of a single statistial soure and use therate distortion framework (the BA algorithm) to partition the sequenes betweenseveral suh models in an optimal way. Here we spei�ally obtain a more expressivestatistial model, as mixtures of (short memory, ergodi) Markov models lay out-side of this lass, and an be aptured only by muh deeper Markov models. Thisis a lear advantage of our urrent approah over mixtures of HMMs (as done in[FST98℄) sine mixtures of HMMs are just HMMs with onstrained state topology.The analogy with rate-distortion theory enables us to take advantage of thetrade-o� between ompression (rate) and distortion, and use the Lagrange multiplier�, required to implement this trade-o�, as a resolution parameter. The deterministiannealing framework follows naturally in this formulation and provides us with asimple way to obtain hierarhial segmentation of very omplex sequenes. As longas the underlying statistial soures are distint enough, ompared to the averagealternation rate between them, our segmentation sheme should perform well.Our experiments with protein families demonstrated a number of lear advan-tages of the proposed algorithm: it is fully automated; it does not require or attemptan MSA of the input sequenes; it handles heterogeneous groups well and loatesdomains appearing only few times in the data; by nature it is not onfused by dif-ferent module orderings within the input sequenes; it appears to seldom generatefalse positives; and it is shown to surpass HMM lustering in at least one hard in-stane. Together with the tremendous suess on the multilingual text data we geta strong evidene that our algorithm is a new powerful tool for sequene analysisthat worth further development and examination on additional types of data.
14
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